scholarly journals Optimization of Thermoplastic Blend Matrix HDPE/PLA with Different Types and Levels of Coupling Agents

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2527 ◽  
Author(s):  
Alessia Quitadamo ◽  
Valérie Massardier ◽  
Carlo Santulli ◽  
Marco Valente

High-density polyethylene (HDPE) and poly(lactic) acid (PLA) blends with different ratios of both polymers, namely, 30:70, 50:50, and 70:30, were produced. Polyethylene-grafted maleic anhydride and a random copolymer of ethylene and glycidyl methacrylate were also considered as compatibilizers to modify HDPE/PLA optimal blends and were added in the amounts of 1, 3, and 5 wt.%. Different properties of the blends were evaluated by performing tensile tests and scanning electron microscopy to analyze blend and interfaces morphology. Moreover, thermomechanical analysis through differential scanning calorimetry, thermo-gravimetric analysis, and infrared spectroscopy were also performed. The blend containing equal amounts of HDPE and PLA seemed to present a good balance between amount of bio-derived charge and acceptable mechanical properties. This suggests that these blends have a good potential for the production of composites with lingo-cellulosic fillers.

Author(s):  
Alessia Quitadamo ◽  
Valérie Massardier ◽  
Carlo Santulli ◽  
Marco Valente

High density polyethylene (HDPE) and poly(lactic) acid (PLA) blends with different ratios of both polymers, namely 30:70, 50:50 and 70:30, were produced. Polyethylene grafted maleic anhydride and a random copolymer of ethylene and glycidyl methacrylate, were also proposed as compatibilizers to modify HDPE-PLA optimal blends and were added in the amounts of 1, 3 and 5 wt.%. Blends properties have been evaluated through different aspects by performing tensile tests, scanning electron microscopy to analyze blend morphology and interfaces, and thermomechanical analysis through differential scanning calorimetry, thermo-gravimetric analyses and infrared spectroscopy. The second blend, the one with equal amounts of HDPE and PLA seems to represent a good balance between high amount of bio-derived charge and acceptable mechanical properties. This suggests a good potential of these blends, which would be a good starting point for the production of composites with lingo-cellulosic fillers.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Alessia Quitadamo ◽  
Valerie Massardier ◽  
Marco Valente

Blends based on high-density polyethylene (HDPE) and poly(lactic) acid (PLA) with different ratios of both polymers were produced: a blend with equal amounts of HDPE and PLA, hence 50 wt.% each, proved to be a useful compromise, allowing a high amount of bioderived charge without this being too detrimental for mechanical properties and considering its possibility to biodegradation behaviour in outdoor application. In this way, an optimal blend suitable for producing a composite with cellulosic fillers is proposed. In the selected polymer blend, wood flour (WF) was added as a natural filler in the proportion of 20, 30, and 40 wt.%, considering as 100 the weight of the polymer blend matrix. There are two compatibilizers to modify both HDPE-PLA blend and wood-flour/polymer interfaces, i.e., polyethylene-grafted maleic anhydride and a random copolymer of ethylene and glycidyl methacrylate. The most suitable percentage of compatibilizer for HDPE-PLA blends appears to be 3 wt.%, which was selected also for use with wood flour. In order to evaluate properties of blends and composites tensile tests, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analyses, and infrared spectroscopy have been performed. Wood flour seems to affect heavy blend behaviour in process production of material suggesting that future studies are needed to reduce defectiveness.


e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
J. L. Feng ◽  
C. Y. Yue ◽  
K. S. Chian

AbstractThis project aims to develop and characterize a series of bismaleimide (BMI) polymers based on maleic anhydride and aliphatic-ether diamines. The effects of varying the chain length of aliphatic-ether diamines on the resultant bismaleimide systems were evaluated so that their suitability for microelectronics applications could be evaluated. The synthetic reaction and properties of the bismaleimide materials were investigated using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermo- Gravimetric Analysis (TGA), Dielectric Thermal Analysis (DEA) and rheometry. Results showed that thermal, dielectric and rheological properties were all affected by the main chain length of BMI. The magnitude of the dielectric constant at 100 kHz increases with the increasing chain length. The curing peak temperature, curing heat and degradation temperature of BMI, all decrease with the increasing chain length.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 814 ◽  
Author(s):  
Bartolomeo Coppola ◽  
Luciano Di Maio ◽  
Loredana Incarnato ◽  
Jean-Marc Tulliani

Polypropylene/carbon nanotubes (PP/CNTs) nanocomposites with different CNTs concentrations (i.e., 1, 2, 3, 5 and 7 wt%) were prepared and tested as strain gauges for structures monitoring. Such sensors were embedded in cementitious mortar prisms and tested in 3-point bending mode recording impedance variation at increasing load. First, thermal (differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA)), mechanical (tensile tests) and morphological (FE-SEM) properties of nanocomposites blends were assessed. Then, strain-sensing tests were carried out on PP/CNTs strips embedded in cementitious mortars. PP/CNTs nanocomposites blends with CNTs content of 1, 2 and 3 wt% did not show significant results because these concentrations are below the electrical percolation threshold (EPT). On the contrary, PP/CNTs nanocomposites with 5 and 7 wt% of CNTs showed interesting sensing properties. In particular, the best result was highlighted for the PP/CNT nanocomposite with 5 wt% CNTs for which an average gauge factor (GF) of approx. 1400 was measured. Moreover, load-unload cycles reported a good recovery of the initial impedance. Finally, a comparison with some literature results, in terms of GF, was done demonstrating the benefits deriving from the use of PP/CNTs strips as strain-gauges instead of using conductive fillers in the bulk matrix.


2013 ◽  
Vol 652-654 ◽  
pp. 490-494
Author(s):  
Bo Shi ◽  
Liang Liang ◽  
Bo Lin ◽  
Min Hua Qi

Using dendritic bromide poly (benzyl ether), G2-Br, as macroinitiator, dendritic-linear polymer (G2-PS-NHSO3Na) was obtained via atom transfer radical polymerization and nucleophilic substitution of G2-PS-Br. G2-PS-NHSO3Na was constructed on cationic silica by both electrostatic attraction and steric effort coming from dendritic block of G2-PS-NHSO3Na. 1H-NMR and differential scanning calorimetry were used to characterize the structure and thermal behavior of G2-PS-NHSO3Na; thermo-gravimetric analysis and TEM were applied to analysis the assembly amount of G2-PS-NHSO3Na and the dispersibility of silica before and after assembly. The results show that G2-PS-NHSO3Na can be synthesized successfully and has exact structure; it can be constructed on cationic silica with 27% assembly amount; the aggregation of silica can be prevented effectively by the dendritic-linear brushes, but the molecular weight of linear segment and the generation of dendritic block will influence the assembly behavior and the amount of the dendritic-linear brushes.


2010 ◽  
Vol 8 (6) ◽  
pp. 1227-1235 ◽  
Author(s):  
◽  
Afaq Ahmad

AbstractA novel composite superionic system, [Ag2HgI4:0.2AgI]:xCuI, (x = 0.2, 0.4, 0.6 mol. wt.%), was prepared and [Ag2HgI4:0.2AgI] mixed system was used as the host. Electrical conductivity was measured to study the transition behavior at frequencies of 100 Hz, 120 Hz, 1 kHz, and 10 kHz in the temperature range 90°–170°C by a Gen Rad 1659 RLC Digibridge. Sharp increase in conductivity was observed for β-α phase transitions. As a result of increase in the dopant-to-host ratio, the conductivity of the system exhibited Arrhenius (thermally activated)-type behavior. X-ray powder diffraction, differential scanning calorimetry (DSC), differential thermal analysis (DTA) and thermo-gravimetric analysis (TGA) studies confirmed the doping effect on the transition in the host, the phase transition temperature increased with an increase in the dopant concentration. Activation energies for the system in eV both for the pretransition and post-transition phase transformations are reported. The addition of CuI to [Ag2HgI4:0.2AgI] shifted the phase transition of the host [Ag2HgI4:0.2AgI], due to an interaction between [Ag2HgI4:0.2AgI] and CuI.


2012 ◽  
Vol 727-728 ◽  
pp. 1729-1733 ◽  
Author(s):  
Germannya D.A. Silva ◽  
Kleber G.B. Alves ◽  
Yeda B. Almeida ◽  
Ricardo A. Sanguinetti ◽  
Yogendra Prasad Yadava

The objectives of this paper are study effect of dispersion of hard alumina (Al2O3) microparticles-filled polypropylene (PP) composites. Al2O3/PP composites containing 1.0 – 5.0 wt% of the Al2O3 were prepared through melt blending and specimens were produced through injection moulding technique. This study sets out to evaluate the influence of adding hard particles to the mechanical properties of the composite obtained while keeping the processing characteristics of the material. The material was characterized as thermo gravimetric analysis (TGA) and scanning electron microscopy (SEM). The tensile tests performed showed an increase in the mechanical properties of the composite (modulus and elongation (%)) by increasing the Al2O3 content. The SEM images show a change in the fracture behavior between pure PP (brittle fracture) and Al2O3/PP composites containing 3.0 and 5.0 wt % (ductile fracture). The research aims to establish a new parameter for the development of products and advances in the application of this material.


2019 ◽  
Vol 18 (2) ◽  
pp. 271-280 ◽  
Author(s):  
Fahima Aktar ◽  
Md Zakir Sultan ◽  
Mohammad A Rashid

Drug-drug interactions have been a serious concern for pharmacokinetics, pharmacodynamics and pharmacological profiles of therapeutic agents. The aim of this study was to carry out interactions of olmesartan medoxomil with dapagliflozin, vildagliptin and metformin, which were confirmed by TLC, HPLC and FT-IR. The newly formed complexes showed characteristic thermochemical properties in differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). In TLC, three spots from the three complexes were found to be different from their precursor drugs. In HPLC chromatograms, the Rt (retention time) of the pure olmesartan medoxomil, dapagliflozin, vildagliptin and metformin were found to be different from their respective complexes. The FT-IR spectra obtained for drug-drug interactions were seen to demonstrate new pattern of peaks compared to pure drugs. The DSC and TGA thermograms of olmesartan medoxomil, dapagliflozin, vildagliptin and metformin were also found to be different from their complexes. All these variations from parent compounds indicated the formation of new complexes. Dhaka Univ. J. Pharm. Sci. 18(2): 271-180, 2019 (December)


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Abdol Reza Hajipour ◽  
Saeed Zahmatkesh ◽  
Arnold E. Ruoho

AbstractThis paper deals with the polycondensation between a chiral diacyl chloride (N,N′-Pyromelliticdiimido-di-L-leucine chloride) and six different dihydrazides. The corresponding poly (hydrazide-imide)s which have been obtained in quantitative yields are moderately soluble in polar aprotic solvents, have good thermal stability and optical activity. The synthetic compounds have been characterized by IR, UV and 1H NMR spectroscopy, elemental analysis and specific rotation. The thermal properties of the polymers (10 and 15) have been studied by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC).


Author(s):  
Abdel-Hamid I. Mourad ◽  
Omar G. Ayad ◽  
Ashfakur Rahman ◽  
Ali Hilal-Alnaqbi ◽  
Basim I. Abu-Jdayil

This work is concerned with the synthesis and characterization of Multi-Walled Carbon Nanotube (MWCNT) reinforced Kevlar KM2Plus composites with various MWCNT contents (0.2, 0.3, 0.4, 0.5, 0.6, and 0.8 wt. %), by the wet lay-up technique. These samples were experimentally investigated for their thermo-mechanical properties using Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), tensile testing and three-point bending techniques. The mechanical properties showed remarkable improvement with increasing MWCNT wt.% up to certain content. The results revealed that the addition of MWCNT fillers has no significant effect on the thermal stability of the composites.


Sign in / Sign up

Export Citation Format

Share Document