Effect of Alumina Ceramic Powder Dispersion on Mechanical Properties of PolyPropylene Polymers

2012 ◽  
Vol 727-728 ◽  
pp. 1729-1733 ◽  
Author(s):  
Germannya D.A. Silva ◽  
Kleber G.B. Alves ◽  
Yeda B. Almeida ◽  
Ricardo A. Sanguinetti ◽  
Yogendra Prasad Yadava

The objectives of this paper are study effect of dispersion of hard alumina (Al2O3) microparticles-filled polypropylene (PP) composites. Al2O3/PP composites containing 1.0 – 5.0 wt% of the Al2O3 were prepared through melt blending and specimens were produced through injection moulding technique. This study sets out to evaluate the influence of adding hard particles to the mechanical properties of the composite obtained while keeping the processing characteristics of the material. The material was characterized as thermo gravimetric analysis (TGA) and scanning electron microscopy (SEM). The tensile tests performed showed an increase in the mechanical properties of the composite (modulus and elongation (%)) by increasing the Al2O3 content. The SEM images show a change in the fracture behavior between pure PP (brittle fracture) and Al2O3/PP composites containing 3.0 and 5.0 wt % (ductile fracture). The research aims to establish a new parameter for the development of products and advances in the application of this material.

Author(s):  
Abdel-Hamid I. Mourad ◽  
Omar G. Ayad ◽  
Ashfakur Rahman ◽  
Ali Hilal-Alnaqbi ◽  
Basim I. Abu-Jdayil

This work is concerned with the synthesis and characterization of Multi-Walled Carbon Nanotube (MWCNT) reinforced Kevlar KM2Plus composites with various MWCNT contents (0.2, 0.3, 0.4, 0.5, 0.6, and 0.8 wt. %), by the wet lay-up technique. These samples were experimentally investigated for their thermo-mechanical properties using Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), tensile testing and three-point bending techniques. The mechanical properties showed remarkable improvement with increasing MWCNT wt.% up to certain content. The results revealed that the addition of MWCNT fillers has no significant effect on the thermal stability of the composites.


2013 ◽  
Vol 668 ◽  
pp. 80-84
Author(s):  
Zhong Cheng Zhou ◽  
Xiong Jun Shen ◽  
Xin Fan ◽  
Qiu Mei Wu ◽  
Hai Lin Yang ◽  
...  

Nanocrystals hydroxyapatite (nHA) was synthesized and modified chemically, and nanocrystals hydroxyapatite / poly(L-lactide)/poly(ethylene succinate)(nHA/PLLA/PES) composite was prepared by melt-blending using nHA, PLLA and PES as reactants in a stainless steel chamber. The obtained nHA was of high purity and high crystallinity as well, its mean sizes measured from TEM observations were 65±35nm (long axis) and 40±10nm (short axis), and are close to the endosteal needle hydroxyapatite crystals size ((15 ~ 20) nm×60 nm) in the human body. The mechanical properties of nHA/ PLLA/PES blends were determined by bending and tensile tests and the effects of nHA content on the mechanical properties of nHA/PLLA/PES blends were investigated. The blending modulus and tensile modulus increase with the nHA (0,5,10,15and 20 wt.%) content increase, while blending strength increases up to HA mass fraction of 10% and after that decreases. SEM images revealed that the surface changed from rough to smooth with increasing nHA content, especially with nHA content higher than 20%, which implied the failure mechanism of the material changes from ductile to brittle.


2017 ◽  
Vol 16 (04) ◽  
pp. 1750002 ◽  
Author(s):  
K. Kalpanadevi ◽  
C. R. Sinduja ◽  
R. Manimekalai

The synthesis of CdFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from the inorganic precursor, [CdFe2(cin)3(N2H[Formula: see text]], which was obtained by a simple precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. On appropriate annealing, [CdFe2(cin)3(N2H[Formula: see text]] yielded CdFe2O4 nanoparticles. The XRD studies showed that the crystallite size of the particles was 13[Formula: see text]nm. The results of HRTEM studies also agreed well with those of XRD. SAED pattern of the sample established the polycrystalline nature of the nanoparticles. SEM images displayed a random distribution of grains in the sample.


2009 ◽  
Vol 28 (3) ◽  
pp. 179-191 ◽  
Author(s):  
Imelda Olivas-Armendariz ◽  
Perla E. García-Casillas ◽  
Alberto Martínez-Villafañe ◽  
Carlos A. Martinez-Pérez

In this work the synthesis and characterization of polyurethane (PU)-chitosan(CH) porous prepared by thermal induced phase separation (TIPS) is described, the obtained products were characterized by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC), evidence of the interaction between both polymers was acquired from infrared spectroscopy. The morphology of the scaffolds was studied by scanning electron microscopy also the mechanical properties were acquired. The results showed that the TIPS technique is appropriate for the production of PU-CH porous materials.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2527 ◽  
Author(s):  
Alessia Quitadamo ◽  
Valérie Massardier ◽  
Carlo Santulli ◽  
Marco Valente

High-density polyethylene (HDPE) and poly(lactic) acid (PLA) blends with different ratios of both polymers, namely, 30:70, 50:50, and 70:30, were produced. Polyethylene-grafted maleic anhydride and a random copolymer of ethylene and glycidyl methacrylate were also considered as compatibilizers to modify HDPE/PLA optimal blends and were added in the amounts of 1, 3, and 5 wt.%. Different properties of the blends were evaluated by performing tensile tests and scanning electron microscopy to analyze blend and interfaces morphology. Moreover, thermomechanical analysis through differential scanning calorimetry, thermo-gravimetric analysis, and infrared spectroscopy were also performed. The blend containing equal amounts of HDPE and PLA seemed to present a good balance between amount of bio-derived charge and acceptable mechanical properties. This suggests that these blends have a good potential for the production of composites with lingo-cellulosic fillers.


2013 ◽  
Vol 284-287 ◽  
pp. 245-249
Author(s):  
Ming Ming Yu ◽  
Yuan Yuan Cui ◽  
Xiao Ma ◽  
Ai Jun Li ◽  
Rui Cheng Bai ◽  
...  

To study the relationship between the molecular main chain structure and the properties of amine based tetra-functional epoxy resins, especially for the thermal stabilities and the mechanical properties, N,N,N',N'-Tetraglycidyl-2,2-Bis[4-(4-aminophenoxy)phenyl]propane (TGBAPP) and N,N,N',N'-Tetraglycidyl-4,4'-diamino diphenyl ether (TGDDE) were cured with Methyl nadic anhydride (MNA). The thermal behavior of the cured epoxy resins were studied with the thermo-gravimetric analysis (TGA), and the glass transition temperature (Tg) were determined with the Dynamic Mechanical Analysis (DMA). Additionally, the mechanical properties of them were tested. The results indicated that the cured epoxy resin based on TGBAPP had better thermal stabilities and toughness.


2008 ◽  
Vol 59 (7) ◽  
Author(s):  
Madalina Angelusiu ◽  
Maria Negoiu ◽  
Stefania-Felicia Barbuceanu ◽  
Tudor Rosu

The paper presents the synthesis and characterization of Cu(II), Co(II), Ni(II), Cd(II), Zn(II) and Hg(II) complexes with N1-[4-(4-bromo-phenylsulfonyl)-benzoyl]-N4-(4-methoxyphenyl)-thiosemicarbazide. The new compounds were characterized by IR, EPR, electronic spectroscopy, magnetic moments, thermo-gravimetric analysis and elemental analysis.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1728
Author(s):  
Peng Wen ◽  
Teng-Gen Hu ◽  
Yan Wen ◽  
Ke-Er Li ◽  
Wei-Peng Qiu ◽  
...  

An ethyl acetate extract from of Nervilia fordii (NFE) with considerable suppression activity on lipid peroxidation (LPO) was first obtained with total phenolic and flavonoid contents and anti-LPO activity (IC50) of 86.67 ± 2.5 mg GAE/g sample, 334.56 ± 4.7 mg RE/g extract and 0.307 mg/mL, respectively. In order to improve its stability and expand its application in antioxidant packaging, the nano-encapsulation of NFE within poly(vinyl alcohol) (PVA) and polyvinyl(pyrrolidone) (PVP) bio-composite film was then successfully developed using electrospinning. SEM analysis revealed that the NFE-loaded fibers exhibited similar morphology to the neat PVA/PVP fibers with a bead-free and smooth morphology. The encapsulation efficiency of NFE was higher than 90% and the encapsulated NFE still retained its antioxidant capacity. Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) analysis confirmed the successful encapsulation of NFE into fibers and their compatibility, and the thermal stability of which was also improved due to the intermolecular interaction demonstrated by thermo gravimetric analysis (TGA). The ability to preserve the fish oil’s oxidation and extend its shelf-life was also demonstrated, suggesting the obtained PVA/PVP/NFE fiber mat has the potential as a promising antioxidant food packaging material.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2158
Author(s):  
Nanci Vanesa Ehman ◽  
Diana Ita-Nagy ◽  
Fernando Esteban Felissia ◽  
María Evangelina Vallejos ◽  
Isabel Quispe ◽  
...  

Bio-polyethylene (BioPE, derived from sugarcane), sugarcane bagasse pulp, and two compatibilizers (fossil and bio-based), were used to manufacture biocomposite filaments for 3D printing. Biocomposite filaments were manufactured and characterized in detail, including measurement of water absorption, mechanical properties, thermal stability and decomposition temperature (thermo-gravimetric analysis (TGA)). Differential scanning calorimetry (DSC) was performed to measure the glass transition temperature (Tg). Scanning electron microscopy (SEM) was applied to assess the fracture area of the filaments after mechanical testing. Increases of up to 10% in water absorption were measured for the samples with 40 wt% fibers and the fossil compatibilizer. The mechanical properties were improved by increasing the fraction of bagasse fibers from 0% to 20% and 40%. The suitability of the biocomposite filaments was tested for 3D printing, and some shapes were printed as demonstrators. Importantly, in a cradle-to-gate life cycle analysis of the biocomposites, we demonstrated that replacing fossil compatibilizer with a bio-based compatibilizer contributes to a reduction in CO2-eq emissions, and an increase in CO2 capture, achieving a CO2-eq storage of 2.12 kg CO2 eq/kg for the biocomposite containing 40% bagasse fibers and 6% bio-based compatibilizer.


Sign in / Sign up

Export Citation Format

Share Document