scholarly journals Overview and Future Advanced Engineering Applications for Morphing Surfaces by Shape Memory Alloy Materials

Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 708 ◽  
Author(s):  
Andrea Sellitto ◽  
Aniello Riccio

The development of structures able to autonomously change their characteristics in response to an external simulation is considered a promising research field. Indeed, these structures, called smart structures, can be adopted to improve the aerodynamic performance of air and land vehicles. In this work, an overview and future applications of Shape Memory Alloys (SMA)-based smart structures are presented. The use of SMA materials seems to be very promising in several engineering sectors. Advanced SMA-based devices, designed to improve the aerodynamic performance of vehicles by modifying the shape of the spoiler and the rear upper panel, are briefly introduced and discussed in this paper. Indeed, a simplified model simulating the SMA mechanical behavior has been considered to demonstrate the feasibility of the introduced smart structures for adaptive aerodynamic applications. Numerical simulations of the investigated structures are provided as a justification of the proposed designs.

Author(s):  
R Jähne ◽  
L F Campanile

The thermal shape recovery shown by shape memory alloys is a property that makes these materials very attractive for applications in the field of smart structures, e.g. bending actuators. This article shows a design method for coaxial bimorphs that are composed of a linear-elastic and shape memory alloy component, properly coupled. A simple and effective method is proposed to solve for the component designs in order to achieve given bimorph configurations. Analytical examples and finite-element simulations are shown for the case of assigned bimorph's warm shape.


Author(s):  
Theresa M. Simon

AbstractWe analyze generic sequences for which the geometrically linear energy $$\begin{aligned} E_\eta (u,\chi )\,{:}{=} \,\eta ^{-\frac{2}{3}}\int _{B_{1}\left( 0\right) } \left| e(u)- \sum _{i=1}^3 \chi _ie_i\right| ^2 \, \mathrm {d}x+\eta ^\frac{1}{3} \sum _{i=1}^3 |D\chi _i|({B_{1}\left( 0\right) }) \end{aligned}$$ E η ( u , χ ) : = η - 2 3 ∫ B 1 0 e ( u ) - ∑ i = 1 3 χ i e i 2 d x + η 1 3 ∑ i = 1 3 | D χ i | ( B 1 0 ) remains bounded in the limit $$\eta \rightarrow 0$$ η → 0 . Here $$ e(u) \,{:}{=}\,1/2(Du + Du^T)$$ e ( u ) : = 1 / 2 ( D u + D u T ) is the (linearized) strain of the displacement u, the strains $$e_i$$ e i correspond to the martensite strains of a shape memory alloy undergoing cubic-to-tetragonal transformations and the partition into phases is given by $$\chi _i:{B_{1}\left( 0\right) } \rightarrow \{0,1\}$$ χ i : B 1 0 → { 0 , 1 } . In this regime it is known that in addition to simple laminates, branched structures are also possible, which if austenite was present would enable the alloy to form habit planes. In an ansatz-free manner we prove that the alignment of macroscopic interfaces between martensite twins is as predicted by well-known rank-one conditions. Our proof proceeds via the non-convex, non-discrete-valued differential inclusion $$\begin{aligned} e(u) \in \bigcup _{1\le i\ne j\le 3} {\text {conv}} \{e_i,e_j\}, \end{aligned}$$ e ( u ) ∈ ⋃ 1 ≤ i ≠ j ≤ 3 conv { e i , e j } , satisfied by the weak limits of bounded energy sequences and of which we classify all solutions. In particular, there exist no convex integration solutions of the inclusion with complicated geometric structures.


2021 ◽  
Vol 1 (2) ◽  
pp. 12-20
Author(s):  
Najmeh Keshtkar ◽  
Johannes Mersch ◽  
Konrad Katzer ◽  
Felix Lohse ◽  
Lars Natkowski ◽  
...  

This paper presents the identification of thermal and mechanical parameters of shape memory alloys by using the heat transfer equation and a constitutive model. The identified parameters are then used to describe the mathematical model of a fiber-elastomer composite embedded with shape memory alloys. To verify the validity of the obtained equations, numerical simulations of the SMA temperature and composite bending are carried out and compared with the experimental results.


2018 ◽  
Vol 30 (3) ◽  
pp. 479-494 ◽  
Author(s):  
Venkata Siva C Chillara ◽  
Leon M Headings ◽  
Ryohei Tsuruta ◽  
Eiji Itakura ◽  
Umesh Gandhi ◽  
...  

This work presents smart laminated composites that enable morphing vehicle structures. Morphing panels can be effective for drag reduction, for example, adaptive fender skirts. Mechanical prestress provides tailored curvature in composites without the drawbacks of thermally induced residual stress. When driven by smart materials such as shape memory alloys, mechanically-prestressed composites can serve as building blocks for morphing structures. An analytical energy-based model is presented to calculate the curved shape of a composite as a function of force applied by an embedded actuator. Shape transition is modeled by providing the actuation force as an input to a one-dimensional thermomechanical constitutive model of a shape memory alloy wire. A design procedure, based on the analytical model, is presented for morphing fender skirts comprising radially configured smart composite elements. A half-scale fender skirt for a compact passenger car is designed, fabricated, and tested. The demonstrator has a domed unactuated shape and morphs to a flat shape when actuated using shape memory alloys. Rapid actuation is demonstrated by coupling shape memory alloys with integrated quick-release latches; the latches reduce actuation time by 95%. The demonstrator is 62% lighter than an equivalent dome-shaped steel fender skirt.


2019 ◽  
Vol 162 ◽  
pp. 94-105 ◽  
Author(s):  
Changsheng Zhang ◽  
Hong Wang ◽  
Jian Li ◽  
Beibei Pang ◽  
Yuanhua Xia ◽  
...  

1999 ◽  
Vol 121 (1) ◽  
pp. 93-97 ◽  
Author(s):  
Kaushik Bhattacharya

Shape-memory Alloys are attractive for many potential applications. In an attempt to provide ideas and guidelines for the development of new shape-memory alloys, this paper reports on a series of investigations that examine the reasons in the crystallography that make (i) shape-memory alloys special amongst martensites and (ii) Nickel-Titanium special among shape-memory alloys.


1993 ◽  
Vol 115 (1) ◽  
pp. 129-135 ◽  
Author(s):  
C. Liang ◽  
C. A. Rogers

Shape memory alloys (SMAs) have several unique characteristics, including their Young’s modulus-temperature relations, shape memory effects, and damping characteristics. The Young’s modulus of the high-temperature austenite of SMAs is about three to four times as large as that of low-temperature martensite. Therefore, a spring made of shape memory alloy can change its spring constant by a factor of three to four. Since a shape memory alloy spring can vary its spring constant, provide recovery stress (shape memory effect), or be designed with a high damping capacity, it may be useful in adaptive vibration control. Some vibration control concepts utilizing the unique characteristics of SMAs will be presented in this paper. Shape memory alloy springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some design approaches based upon linear theory have been proposed for shape memory alloy springs. A more accurate design method for SMA springs based on a new nonlinear thermomechanical constitutive relation of SMA is also presented in this paper.


2015 ◽  
Vol 661 ◽  
pp. 98-104 ◽  
Author(s):  
Kuang-Jau Fann ◽  
Pao Min Huang

Because of being in possession of shape memory effect and superelasticity, Ni-Ti shape memory alloys have earned more intense gaze on the next generation applications. Conventionally, Ni-Ti shape memory alloys are manufactured by hot forming and constraint aging, which need a capital-intensive investment. To have a cost benefit getting rid of plenty of die sets, this study is aimed to form Ni-Ti shape memory alloys at room temperature and to age them at elevated temperature without any die sets. In this study, starting with solution treatments at various temperatures, which served as annealing process, Ni-rich Ni-Ti shape memory alloy wires were bent by V-shaped punches in different curvatures at room temperature. Subsequently, the wires were aged at different temperatures to have shape memory effect. As a result, springback was found after withdrawing the bending punch and further after the aging treatment as well. A higher solution treatment temperature or a smaller bending radius leads to a smaller springback, while a higher aging treatment temperature made a larger springback. This springback may be compensated by bending the wires in further larger curvatures to keep the shape accuracy as designed. To explore the shape memory effect, a reverse bending test was performed. It shows that all bent wires after aging had a shape recovery rate above 96.3% on average.


Sign in / Sign up

Export Citation Format

Share Document