scholarly journals Hydrothermal Synthesis of Rare-Earth Modified Titania: Influence on Phase Composition, Optical Properties, and Photocatalytic Activity

Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 713 ◽  
Author(s):  
Nejc Rozman ◽  
David Tobaldi ◽  
Uroš Cvelbar ◽  
Harinarayanan Puliyalil ◽  
João Labrincha ◽  
...  

In order to expand the use of titania indoor as well as to increase its overall performance, narrowing the band gap is one of the possibilities to achieve this. Modifying with rare earths (REs) has been relatively unexplored, especially the modification of rutile with rare earth cations. The aim of this study was to find the influence of the modification of TiO2 with rare earths on its structural, optical, morphological, and photocatalytic properties. Titania was synthesized using TiOSO4 as the source of titanium via hydrothermal synthesis procedure at low temperature (200 °C) and modified with selected rare earth elements, namely, Ce, La, and Gd. Structural properties of samples were determined by X-ray powder diffraction (XRD), and the phase ratio was calculated using the Rietveld method. Optical properties were analyzed by ultraviolet and visible light (UV-Vis) spectroscopy. Field emission scanning electron microscope (FE-SEM) was used to determine the morphological properties of samples and to estimate the size of primary crystals. X-ray photoelectron spectroscopy (XPS) was used to determine the chemical bonding properties of samples. Photocatalytic activity of the prepared photocatalysts as well as the titania available on the market (P25) was measured in three different setups, assessing volatile organic compound (VOC) degradation, NOx abatement, and water purification. It was found out that modification with rare earth elements slows down the transformation of anatase and brookite to rutile. Whereas the unmodified sample was composed of only rutile, La- and Gd-modified samples contained anatase and rutile, and Ce-modified samples consisted of anatase, brookite, and rutile. Modification with rare earth metals has turned out to be detrimental to photocatalytic activity. In all cases, pure TiO2 outperformed the modified samples. Cerium-modified TiO2 was the least active sample, despite having a light absorption tail up to 585 nm wavelength. La- and Gd-modified samples did not show a significant shift in light absorption when compared to the pure TiO2 sample. The reason for the lower activity of modified samples was attributed to a greater Ti3+/Ti4+ ratio and a large amount of hydroxyl oxygen found in pure TiO2. All the modified samples had a smaller Ti3+/Ti4+ ratio and less hydroxyl oxygen.

1968 ◽  
Vol 22 (5) ◽  
pp. 426-430 ◽  
Author(s):  
Harry J. Rose ◽  
Frank Cuttitta

A combined chemical x-ray fluorescence method is described for determining rare-earth elements in small amounts of complex rare-earth minerals. These elements yield a complex x-ray spectrum in which many of the analytical emission Lα lines of a given element coincide with the Lβ and/or Lγ lines of a lighter rare-earth element several atomic numbers removed. The proposed analytical scheme corrects for these interferences. Sixteen elements consisting of the lanthanides, yttrium, and scandium can be determined on as little as a 1-mg portion of the separated oxides. The oxides are dissolved in 1 ml of dilute acid, absorbed onto cellulose powder and pressed into a pellet for x-ray excitation. Chemically analyzed geologic standards are not required for calibration.


1981 ◽  
Vol 25 ◽  
pp. 133-137
Author(s):  
T. K. Smith

The rare earth elements (REE) together give guite complex X-ray emission spectra with a considerable number of overlaps at analytical energies by lines of other REE with lower atomic numbers. Where the concentration of REE is high, as in lanthanide minerals, this Interference is more difficult to rectify. Smith and Gold resolved a similar problem with lower atomic number elements in energy dispersive microprobe analysis by establishing a series of overlap coefficients. They asserted that accurate corrections were necessary because of the relatively poor overall resolution of the instrument and that these should not be limited to the major coincidences. Some of the smaller values had probably been ignored because they were considered statistically Insignificant. The mathematical matrix of Smith and Gold covered 22 elements from fluorine to barium, with intensity coefficients (other than intraelement) quoted from 0.01% to 282.1% and with ZAF corrections necessary in cases of K to L conversion. The overlap coefficients were also adjusted for matrix effects.


2019 ◽  
Vol 9 (2) ◽  
pp. 339 ◽  
Author(s):  
Chunying Wang ◽  
Ting Zeng ◽  
Sipin Zhu ◽  
Chuantao Gu

Rare earth elements are plentiful in Gannan area, China, and there is a large amount of wastewater from all kinds of mines. In this paper, rare-earth modification TiO2 composites (RE/TiO2, RE = La, Ce, Gd, Yb) was studied by theory computation and experimental performance. The prepared RE/TiO2 was investigated for the degradation of benzohydroxamic acid (BHA) as a typical residual reagent in wastewater from beneficiation. The crystallinity, morphology, specific surface area, light absorption, and composition of compound were investigated by various techniques. As a result of computation and experimentation, four different electron configurations of rare earth all retained the anatase phase of TiO2 and reduced the band gap of TiO2 to some degree compared with pure TiO2. Different rare-earth elements and calcination temperatures resulted in different removal effects on BHA. The optimum doping contents were 0.75% (500 °C), 0.20% (500 °C), 0.70% (500 °C) and 0.50% (450 °C) for La, Ce, Gd, Yb respectively. All the RE/TiO2 composites studied in this research still possessed good photoactivity after four runs, which supports the theoretical and practical basement for the photocatalytic treatment of mining and metallurgy wastewater.


Author(s):  
David Maria Tobaldi ◽  
Luc Lajaunie ◽  
ana caetano ◽  
nejc rozman ◽  
Maria Paula Seabra ◽  
...  

<div>Titanium dioxide is by far the most utilised semiconductor material for photocatalytic applications. Still, it is transparent to visible-light. Recently, it has been proved that a type-II band alignment for the rutile−anatase mixture would improve its visible-light absorption.</div><div>In this research paper we thoroughly characterised the real crystalline and amorphous phases of synthesised titanias – thermally treated at different temperatures to get distinct ratios of anatase-rutile-amorphous fraction – as well as that of three commercially available photocatalytic nano-TiO2. </div><div>The structural characterisation was done via advanced X-ray diffraction method, namely the Rietveld-RIR method, to attain a full quantitative phase analysis of the specimens. The microstructure was also investigated via an advanced X-ray method, the whole powder pattern modelling. These methods were validated combining advanced aberration-corrected scanning transmission microscopy and high-resolution electron energy-loss spectroscopy. The photocatalytic activity was assessed in the liquid- and gas-solid phase (employing rhodamine B and 4-chlorophenol, and isopropanol, respectively, as the organic substances to degrade) using a light source irradiating exclusively in the visible-range.</div><div>Optical spectroscopy showed that even a small fraction of rutile (2 wt%) is able to shift to lower energies the apparent optical band gap of an anatase-rutile mixed phase. But is this enough to attain a real photocatalytic activity promoted by merely visible-light?</div><div>We tried to give a reply to that question.</div><div>Photocatalytic activity results in the liquid-solid phase showed that a high surface hydroxylation led to specimen with superior visible light-induced catalytic activity (i.e. dye and ligand-to-metal charge transfer complexes sensitisation effects). That is: not photocatalysis <i>sensu-strictu</i>.</div><div>On the other hand, the gas-solid phase results showed that a higher amount of the rutile fraction (around 10 wt%), together with less recombination of the charge carriers, were more effective for an actual photocatalytic oxidation of isopropanol.</div>


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 124
Author(s):  
Srihasam Saiganesh ◽  
Thyagarajan Krishnan ◽  
Golla Narasimha ◽  
Hesham S. Almoallim ◽  
Sulaiman Ali Alhari ◽  
...  

Over the past few years, the photogenic fabrication of metal oxide nanoparticles has attracted considerable attention, owing to the simple, eco-friendly, and non-toxic procedure. Herein, we fabricated NiO nanoparticles and altered their optical properties by doping with a rare earth element (lanthanum) using Sesbania grandiflora broth for antibacterial applications. The doping of lanthanum with NiO was systematically studied. The optical properties of the prepared nanomaterials were investigated through UV-Vis diffuse reflectance spectra (UV-DRS) analysis, and their structures were studied using X-ray diffraction analysis. The morphological features of the prepared nanomaterials were examined by scanning electron microscopy and transmission electron microscopy, their elemental structure was analyzed by energy-dispersive X-ray spectral analysis, and their oxidation states were analyzed by X-ray photoelectron spectroscopy. Furthermore, the antibacterial action of NiO and La-doped NiO nanoparticles was studied by the zone of inhibition method for Gram-negative and Gram-positive bacterial strains such as Escherichia coli and Bacillus sublitis. It was evident from the obtained results that the optimized compound NiOLa-04 performed better than the other prepared compounds. To the best of our knowledge, this is the first report on the phytosynthetic fabrication of rare-earth ion Lanthanum (La3+)-doped Nickel Oxide (NiO) nanoparticles and their anti-microbial studies.


Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 25
Author(s):  
Chukwuka Bethel Anucha ◽  
Ilknur Altin ◽  
Emin Bacaksız ◽  
Tayfur Kucukomeroglu ◽  
Masho Hilawie Belay ◽  
...  

Abatement of contaminants of emerging concerns (CECs) in water sources has been widely studied employing TiO2 based heterogeneous photocatalysis. However, low quantum energy yield among other limitations of titania has led to its modification with other semiconductor materials for improved photocatalytic activity. In this work, a 0.05 wt.% CuWO4 over TiO2 was prepared as a powder composite. Each component part synthesized via the sol-gel method for TiO2, and CuWO4 by co-precipitation assisted hydrothermal method from precursor salts, underwent gentle mechanical agitation. Homogenization of the nanopowder precursors was performed by zirconia ball milling for 2 h. The final material was obtained after annealing at 500 °C for 3.5 h. Structural and morphological characterization of the synthesized material has been achieved employing X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) N2 adsorption–desorption analysis, Scanning electron microscopy-coupled Energy dispersive X-ray spectroscopy (SEM-EDS), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) for optical characterization. The 0.05 wt.% CuWO4-TiO2 catalyst was investigated for its photocatalytic activity over carbamazepine (CBZ), achieving a degradation of almost 100% after 2 h irradiation. A comparison with pure TiO2 prepared under those same conditions was made. The effect of pH, chemical scavengers, H2O2 as well as contaminant ion effects (anions, cations), and humic acid (HA) was investigated, and their related influences on the photocatalyst efficiency towards CBZ degradation highlighted accordingly.


An account of experiments has already been given by which the analyses of the rare earth elements were completed with the aid of a particularly favourable arrangement of the anode ray apparatus. This paper contains a description of analyses of other elements made with the same setting and also of some others subsequently made to obtain more accurate and complete data on elements whose constitution had already been provisionally settled. Results (72) Hafnium —Many previous attempts to obtain the mass spectra of this element had failed. For the most similar element, zirconium, the only successful results had been obtained from the fluoride. A pure sample of hafnium fluoride had been kindly provided by Professor G. v. Hevesy, one of the discoverers of the element, and this was incorporated into the anode mixture. The first trial was a failure; but after the work on zirconium described below a second attempt was made, this time with resolved, so that only rough estimates of abundance could be obtained. These were as follows:— Mass numbers . . . . . 176 177 178 179 180 % abundance . . . . . . 5 19 28 18 30 These given a mean mass number 178·5. Applying the same correction as with the rare earths we get atomic weight of hafnium = 178·4 ± 0·2 in fair agreement with the International value 178·6.


Sign in / Sign up

Export Citation Format

Share Document