scholarly journals Investigation of the In-Plane Mechanical Anisotropy of Magnesium Alloy AZ31B-O by VPSC–TDT Crystal Plasticity Model

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1590 ◽  
Author(s):  
Bo Zhang ◽  
Shuangming Li ◽  
Huamiao Wang ◽  
Weiqin Tang ◽  
Yaodong Jiang ◽  
...  

The in-plane mechanical anisotropy of magnesium alloy sheet, which significantly influences the design of the parts produced by Mg alloy sheets, is of great importance regarding its wide application. Though the stress–strain response and texture evolution have been intensively investigated, and the anisotropy of Mg alloy can be significantly substantiated by its R-value, which reveals the lateral response of a material other than the primary response. As a consequence, the conjunction of viscoplastic self-consistent model and twinning and detwinning scheme (VPSC–TDT) is employed to investigate the in-plane anisotropy of magnesium alloy AZ31B-O sheet. The loading cases include both tension and compression along different paths with respect to the processing direction of the sheet. It is revealed that the stress–strain relation, texture evolution, R-value, and involved deformation mechanisms are all loading path-dependent. The unique R-values of Mg alloys are interpreted with the aid of modeling behaviors of Mg single crystals. The results agree well with the corresponding experiments. It is found that the hexagonal close-packed (HCP) crystallographic structure, deformation twinning, and initial basal texture are responsible for the characteristic behavior of Mg alloys.

2008 ◽  
Vol 41-42 ◽  
pp. 435-438 ◽  
Author(s):  
Dae Guen Kim ◽  
Hyeon Taek Son ◽  
Jae Seol Lee

The aims of this study are to investigate the microstructure evolution of AZ31 Mg alloys with normal rolling and cross rolling as the large strain hot rolling affects microstructure, texture and mechanical properties of AZ31 Mg alloys. In the microstructures of as-rolled both samples, twins are clearly apparent, small and recrystallized grains are visible along some grain boundary and twinned regions. The Lankford values of large strain cross rolled sample obviously demonstrate the higher average r-value and lower planar anisotropy value. The press formability of cross rolled Mg alloy might be improved due to control of texture and grain size by severe deformation.


2014 ◽  
Vol 1063 ◽  
pp. 215-218 ◽  
Author(s):  
Guang Sheng Huang ◽  
Li Fei Wang ◽  
Fu Sheng Pan ◽  
Ming Tu Ma

Mg alloy is a potential material to be used in automobile, especially in the stamping products. Through texture weakening, temperature increasing, strain rate decreasing, blank holder force controlling, lubrication choosing and so on, the formability of AZ31 magnesium alloy is improved so that the cold stamping on some simple products can be conducted. However, on the complicated products, hot stamping should be considered. Temperature has an important effect on the formability of Mg alloy sheet. As the temperature increasing, the strength of Mg alloys sheet decreases while the formability increases. Hot stamping process is an effective way to broaden the using of Mg alloys.


Author(s):  
Md. Aleem Pasha ◽  
Dr. P. Ravinder Reddy ◽  
Dr. P. Laxminarayana ◽  
Dr. Ishtiaq Ahmad Khan

<div><p><em>Welding of magnesium alloys influence a great effect on magnesium application expansion, especially in marine and aerospace where large-size, complex components are required. Due to specific physical properties of magnesium, its welding requires great control. In general, the solid-state nature of friction stir welding (FSW) process has been found to produce a low concentration of defects. Mechanical properties of  friction stir welded joints are decreases than base material, so to enhance the mechanical properties of welded portion, In the present research additional SiC particulates were incorporated in the weld interface of friction stir welding of Magnesium alloy AZ31B. Silicon Carbide has been added as reinforcement by creating separate geometry, at the edges where the welding is interface with 4 different volume proportions such as 10%, 15%, 25% and 30%. Tool Steel of H13 grade has been used as friction stir welding tool. Rotational Speed of 1400 RPM and Transverse Speed of 25 mm/min were selected. Joined Mg Alloy AZ31B alloy plates were evaluated for their mechanical properties under two different conditions, i.e in the un-reinforced welded condition and reinforced welded conditions. The results of the study revealed that the mechanical properties of the SiC particulates added Mg alloy AZ31B welded joints are superior in all four proportions of SiC, compared to un-reinforced Mg alloy AZ31B welded joints. Microstructural examination of the welded joints was conducted using Optical microscope and revealed that distribution of SiC particles producing increased weld strength. The comparison of the microstructures and mechanical properties of unreinforced Friction stir welded AZ31 with those of SiC reinforced FS-welded joints showed that the addition of SiC particles decreased the grain size and increased the strength.</em></p></div>


2014 ◽  
pp. 233-238
Author(s):  
J. J. Bhattacharyya ◽  
B. Radhakrishnan ◽  
G. Muralidharan ◽  
S. R. Agnew

2014 ◽  
Vol 783-786 ◽  
pp. 363-368 ◽  
Author(s):  
D. Sarker ◽  
Dao Lun Chen

Extruded magnesium alloys showed mechanical anisotropy due to the development of strong crystallographic textures during forming processes. In the present study the strain hardening behavior and texture evolution of an extruded AM30 magnesium alloy were studied in compression using cylindrical samples oriented at angles of 0°, 15°, 30°, 45° and 90° from the extrusion direction (ED). The yield strength decreased with increasing angle up to 45° and then increased at 90° from the ED, while the ultimate compressive strength exhibited a reverse trend. Both hardening capacity and fracture strain first increased from 0° to 45° and then decreased at 90° from the ED. The strain hardening behavior was directly related to the texture change and twinning, which played a key role in accommodating the compressive deformation, as the c-axes in most grains were observed to rotate always towards the anti-compression direction, irrespective of the sample orientation.


2007 ◽  
Vol 539-543 ◽  
pp. 3775-3780 ◽  
Author(s):  
Yutaka S. Sato ◽  
A. Sasaki ◽  
A. Sugimoto ◽  
A. Honda ◽  
Hiroyuki Kokawa

Mg alloy has a poor formability at room temperature because of lack of the active slip systems, but the grain refinement improves its ductility. Friction stir processing (FSP) can create homogeneous microstructure consisting of fine grains in Mg alloys, thus it would be expected that FSP enhances the formability of Mg alloys. In this study, multi-pass FSP was applied to Mg alloy AZ31B, and then formability of FSPed alloy was evaluated. Multi-pass FSP produced the fine recrystallized grains in Mg alloy. The stir zone exhibited larger fracture limit major strains than the base material under uniaxial tension and plane strain deformation, and these values increased with decreasing grain size. The stir zone having grain size of 2.9 μm showed the fracture limit major strains which are roughly as same as those of an annealed pure Al. The present study suggests that FSP is an effective method to enhance the formability of Mg alloys.


2014 ◽  
pp. 233-238
Author(s):  
J.J. Bhattacharyya ◽  
B. Radhakrishnan ◽  
G. Muralidharan ◽  
S.R. Agnew

Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 738 ◽  
Author(s):  
Hui Su ◽  
Zhibing Chu ◽  
Chun Xue ◽  
Yugui Li ◽  
Lifeng Ma

Cuboid samples with significant initial texture differences were cut from extruded AZ31 Mg alloy samples, whose long axis and bar extrusion direction ED were 0° (sample E0), 45° (sample E45), and 90° (sample E90). The relationship among the initial texture, deformation mechanism, mechanical properties, and texture evolution of the AZ31 Mg alloy was investigated systematically using a compression test, microstructure characterization, and the Viscoplastic Self-Consistent (VPSC) model. Results revealed a close relationship among them. By influencing the activation of the deformation mechanism, the deformation under different initial textures resulted in obvious mechanical anisotropy. Compared with E0 and E90, the initial texture of E45 was more conducive to the improvement of reforming ability after pre-compression. Meanwhile, the initial texture significantly affected the microstructure characteristics of the material, especially the number and morphology of the {10–12} tensile twins. Texture results showed that the priority of deformation mechanism depended on the initial texture and led to the difference in texture evolution.


Sign in / Sign up

Export Citation Format

Share Document