scholarly journals Corrosion Evaluation of 316L Stainless Steel in CNT-Water Nanofluid: Effect of CNTs Loading

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1634 ◽  
Author(s):  
Dana H. Abdeen ◽  
Muataz A. Atieh ◽  
Belabbes Merzougui ◽  
Walid Khalfaoui

Polarization resistance and potentiodynamic scan testing were performed on 316L stainless steel (SS) at room temperature in carbon nanotube (CNT)-water nanofluid. Different CNT loadings of 0.05, 0.1, 0.3 and 0.5 wt% were suspended in deionized water using gum arabic (GA) surfactant. Corrosion potential, Tafel constants, corrosion rates and pitting potential values indicated better corrosion performance in the presence of CNTs with respect to samples tested in GA-water solutions. According to Gibbs free energy of adsorption, CNTs were physically adsorbed into the surface of the metal, and this adsorption followed Langmuir adsorption isotherm type II. Samples tested in CNT nanofluid revealed a corrosion performance comparable to that of tap water and better than that for GA-water solutions. Among all samples tested in CNT nanofluids, the lowest corrosion rate was attained with 0.1 wt% CNT nanofluid, while the highest value was obtained with 0.5 wt% CNT nanofluid. At higher CNT concentrations, accumulated CNTs might form active anodic sites and increase the corrosion rate. SEM images for samples of higher CNT loadings were observed to have higher pit densities and diameters.

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 119
Author(s):  
Dana H. Abdeen ◽  
Muataz A. Atieh ◽  
Belabbes Merzougui

The inhibition behavior of carbon nanotubes (CNTs) and Gum Arabic (GA) on the corrosion of 316L stainless steel in CNTs–water nanofluid under the effect of different temperatures was investigated by electrochemical methods and surface analysis techniques. Thereby, 316L stainless steel samples were exposed to CNTs–water nanofluid under temperatures of 22, 40, 60 and 80 °C. Two concentrations of the CNTs (0.1 and 1.0 wt.% CNTs) were homogenously dispersed in deionized water using the surfactant GA and tested using three corrosion tests conducted in series: open circuit test, polarization resistance test, and potentiodynamic scans. These tests were also conducted on the same steel but in solutions of GA-deionized water only. Tests revealed that corrosion increases with temperature and concentration of the CNTs–water nanofluids, having the highest corrosion rate of 32.66 milli-mpy (milli-mil per year) for the 1.0 wt.% CNT nanofluid at 80 °C. In addition, SEM observations showed pits formation around areas of accumulated CNTs that added extra roughness to the steel sample. The activation energy analysis and optical surface observations have revealed that CNTs can desorb at higher temperatures, which makes the surface more vulnerable to corrosion attack.


CORROSION ◽  
10.5006/3779 ◽  
2021 ◽  
Author(s):  
Yoon Hwa ◽  
Christopher Kumai ◽  
Nancy Yang ◽  
Joshua Yee ◽  
Thomas Devine

The localized corrosion of laser surface melted (LSM) 316L stainless steel is investigated by a combination of potentiodynamic anodic polarization in 0.1M HCl and microscopic investigation of the initiation and propagation of localized corrosion. The pitting potential of LSM 316L is significantly lower than the pitting potential of wrought 316L. The LSM microstructure is highly banded as a consequence of the high laser power density and high linear energy density. The bands are composed of zones of changing modes of solidification, cycling between very narrow regions of primary austenite solidification and very wide regions of primary ferrite solidification. Pits initiate in the outer edge of each band where the mode of solidification is primary austenite plane front solidification and primary austenite cellular solidification. The primary austenite regions have low chromium concentration (and possibly low molybdenum concentration), which explains their susceptibility to pitting corrosion. The ferrite is enriched in chromium, which explains the absence of pitting in the primary ferrite regions. The presence of the low chromium regions of primary austenite solidification explains the lower pitting resistance of LSM 316L relative to wrought 316L. The influence of banding on localized corrosion is applicable to other rapidly solidified processes such as additive manufacturing.


2011 ◽  
Vol 347-353 ◽  
pp. 3135-3138
Author(s):  
Hong Hua Ge ◽  
Jie Ting Tao ◽  
Xiao Ming Gong ◽  
Cheng Jun Wei ◽  
Xue Min Xu

Abstract: The effect of electromagnetic treatment on corrosion behavior of carbon steel and stainless steel in simulated cooling water was investigated by electrochemical impedance spectroscopy, potentiodynamic polarization techniques and water analysis. It was found that the charge transfer resistance decreased and the corrosion current density increased after electromagnetic treatment for carbon steel electrode, which shows that such treatment promotes corrosion of carbon steel in simulated cooling water. In contrast, the pitting potential of 316L stainless steel electrode rose which revealed that electromagnetic treatment of the experimental water exhibited corrosion inhibition to 316L stainless steel. Reasons for different corrosion behavior of the two metals were discussed.


2013 ◽  
Vol 834-836 ◽  
pp. 370-373
Author(s):  
Shi Dong Zhu ◽  
Jin Ling Li ◽  
Hai Xia Ma ◽  
Li Liu

Pitting resistance of super martensitic stainless steel 00Cr13Ni5Mo2 made in China has been investigated by employing electrochemical technology and chemical immersion methods. The results showed that pitting potential of super martensitic stainless steel decreased with the increasing of NaCl concentration and temperature, respectively. And corrosion rate of super martensitic stainless steel increased with the increasing of temperature. Furthermore, compared to super martensitic stainless steel made in Japan, the domestic one was better in terms of pitting potential, pitting corrosion rate and the density of the pits, but worse in terms of the depth of the pits.


2012 ◽  
Vol 22 (5) ◽  
pp. 392-400 ◽  
Author(s):  
Abolfazl Motalebi ◽  
Mojtaba Nasr-Esfahani ◽  
Rania Ali ◽  
Mehdi Pourriahi

2011 ◽  
Vol 299-300 ◽  
pp. 175-178 ◽  
Author(s):  
Sen Sen Xin ◽  
Jian Xu ◽  
Feng Jun Lang ◽  
Mou Cheng Li

The corrosion behavior of 316L stainless steel was investigated in seawater at different temperature by using cyclic anodic polarization. The results indicated that two 316L specimens with different grain size showed similar pitting potential at 25°C. The increase of seawater temperature led to the linear decrease of pitting potential and repassivation potential. Because the pitting resistance of fine grain steel reduced larger than that of coarse grain steel with increasing temperature, the latter had a higher pitting potential about 60 mV at 85°C. Compared with the coarse grain steel, the fine grain steel showed a longer induction time for pitting at 65°C.


2021 ◽  
Author(s):  
Paulo Moreira-Filho ◽  
Paloma de Paula da Silva Figueiredo ◽  
Artur Capão ◽  
Luciano Procópio

Abstract The present study evaluated the influence of the marine bacteria Bacillus cereus Mc-1 on the corrosion of 1020 carbon steel, 316L stainless steel, and copper alloy. The Mc-1 strain was grown in a modified ammoniacal citrate culture medium (CFA.ico-), CFA.ico- with sodium nitrate supplementation (NO3-), and CFA.ico- with sodium chloride supplementation (NaCl). The and mass loss and corrosion rate were evaluated after the periods of seven, 15, and 30 days. The results showed that in CFA.ico- and CFA.ico- medium added NO3- the corrosion rates of carbon steel and copper alloy were high when compared to the control. Whereas the medium was supplemented with NaCl, despite the rates being above the averages of the control system, they were considerably below the previous results. In general, the corrosion rates induced by Mc-1 on 316L coupons were below the results compared to carbon steel and copper alloy. When analyzing the corrosion rate measurements, regardless of the culture medium, the corrosion levels decreased consistently after 15 days, being below the levels evaluated after seven days of the experiment. Our analyzes suggest that B. cereus Mc-1 has different influences on corrosion in different metals and environmental conditions, such as the presence of NO3- and NaCl. These results can help to better understand the influence of this bacteria genus on the corrosion of metals in marine environments.


2012 ◽  
Vol 472-475 ◽  
pp. 127-131
Author(s):  
Feng Jun Lang ◽  
Ying Ma ◽  
Jian Rong Liu ◽  
Xian Qiu Huang ◽  
Mou Cheng Li

The influence of passivation on pitting corrosion of 316L stainless steel in concentrated seawater was investigated by using cyclic anodic polarization and critical pitting temperature. The results indicated that the pitting potential of passivated specimen was higher than that of matrix specimen in concentrated seawater at 25°C and 85°C. Critical pitting temperature value of passivated specimen was 56°C, which was much higher than 11°C for matrix specimen. Pitting corrosion occurred in the formed pit of passivated specimen, and metastable pit, lacy cover and new pit were observed in pit morphology.


Sign in / Sign up

Export Citation Format

Share Document