scholarly journals Optically Transparent Metamaterial Absorber Using Inkjet Printing Technology

Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3406
Author(s):  
Heijun Jeong ◽  
Manos M. Tentzeris ◽  
Sungjoon Lim

An optically transparent metamaterial absorber that can be obtained using inkjet printing technology is proposed. In order to make the metamaterial absorber optically transparent, an inkjet printer was used to fabricate a thin conductive loop pattern. The loop pattern had a width of 0.2 mm and was located on the top surface of the metamaterial absorber, and polyethylene terephthalate films were used for fabricating the substrate. An optically transparent conductive indium tin oxide film was introduced in the bottom ground plane. Therefore, the proposed metamaterial absorber was optically transparent. The metamaterial absorber was demonstrated by performing a full-wave electromagnetic simulation and measured in free space. In the simulation, the 90% absorption bandwidth ranged from 26.6 to 28.8 GHz, while the measured 90% absorption bandwidth was 26.8–28.2 GHz. Therefore, it is successfully demonstrated by electromagnetic simulation and measurement results.

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 889
Author(s):  
Yadong Liu ◽  
Juxuan Xie ◽  
Lihui Liu ◽  
Kai Fan ◽  
Zixuan Zhang ◽  
...  

Recently, inkjet printing technology has attracted much attention due to the advantages of drop-on-demand deposition, low-cost and large-area production for organic light-emitting diode (OLED) displays. However, there are still some problems in industrial production and practical application, such as the complexity of ink modulation, high-quality films with homogeneous morphology, and the re-dissolution phenomenon at interfaces. In this work, a printable poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) ink is developed and obtains an adjustable viscosity. Finally, a patterned PEDOT:PSS electrode is fabricated by inkjet printing, and achieves a high conductivity of 1213 S/cm, a transparency of 86.8% and a uniform morphology without coffee-ring effect. Furthermore, the vacuum-evaporated and solution-processed OLEDs are fabricated based on this electrode and demonstrate a current efficiency of 61 cd/A, which is comparable to that of the indium tin oxide counterpart. This work confirms the feasibility of inkjet printing technology to prepare patterned electrodes and expects that it can be used to fabricate highly efficient optoelectronic devices.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Yahiea Al-Naiemy ◽  
Taha A. Elwi ◽  
Haider R. Khaleel ◽  
Hussain Al-Rizzo

We present a systematic approach for producing microstrip antennas using the state-of-the-art-inkjet printing technique. An initial antenna design based on the conventional square patch geometry is adopted as a benchmark to characterize the entire approach; the procedure then could be generalized to different antenna geometries and feeding techniques. For validation purposes, the antenna is designed and simulated using two different 3D full-wave electromagnetic simulation tools: Ansoft’s High Frequency Structure Simulator (HFSS), which is based on the Finite Element Method (FEM), and CST Microwave Studio, which is based on the Finite Integration Technique (FIT). The systematic approach for the fabrication process includes the optimal number of printed layers, curing temperature, and curing time. These essential parameters need to be optimized to achieve the highest electrical conductivity, trace continuity, and structural robustness. The antenna is fabricated using Inkjet Printing Technology (IJPT) utilizing Sliver Nanoparticles (SNPs) conductive ink printed by DMP-2800 Dimatix FujiFilm materials printer.


2015 ◽  
Vol 24 (2) ◽  
pp. 119-123
Author(s):  
Ji Won Kye ◽  
Dong Cheul Han ◽  
Han Jae Shin ◽  
HeonGon Kim ◽  
Wanghoon Lee

2017 ◽  
Vol 64 (10) ◽  
pp. 7749-7757 ◽  
Author(s):  
Inaki Ortego-Isasa ◽  
Kami Pars Benli ◽  
Felix Casado ◽  
Juan Ignacio Sancho ◽  
Daniel Valderas

2018 ◽  
Vol 15 (11/12) ◽  
pp. 998
Author(s):  
Ngan Nguyen Le ◽  
Hue Cam Thi Phan ◽  
Huong Kim Tran ◽  
Dung My Thi Dang ◽  
Chien Mau Dang

Sign in / Sign up

Export Citation Format

Share Document