scholarly journals Effects of Aggregate Mesostructure on Permanent Deformation of Asphalt Mixture Using Three-Dimensional Discrete Element Modeling

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3601 ◽  
Author(s):  
Deyu Zhang ◽  
Linhao Gu ◽  
Junqing Zhu

This paper investigated the effects of aggregate mesostructures on permanent deformation behavior of an asphalt mixture using the three-dimensional (3D) discrete element method (DEM). A 3D discrete element (DE) model of an asphalt mixture composed of coarse aggregates, asphalt mastic, and air voids was developed. Mesomechanical models representing the interactions among the components of asphalt mixture were assigned. Based on the mesomechanical modeling, the uniaxial static load creep tests were simulated using the prepared models, and effects of aggregate angularity, orientation, surface texture, and distribution on the permanent deformation behavior of the asphalt mixtures were analyzed. It was proven that good aggregate angularity had a positive effect on the permanent deformation performance of the asphalt mixtures, especially when approximate cubic aggregates were used. Aggregate packing was more stable when the aggregate orientations tended to be horizontal, which improved the permanent deformation performance of the asphalt mixture. The influence of orientations of 4.75 mm size aggregates on the permanent deformation behavior of the asphalt mixture was significant. Use of aggregates with good surface texture benefitted the permanent deformation performance of the asphalt mixture. Additionally, the non-uniform distribution of aggregates had a negative impact on the permanent deformation performance of the asphalt mixtures, especially when aggregates were distributed non-uniformly in the vertical direction.

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3700
Author(s):  
Changjiang Kou ◽  
Xiaohui Pan ◽  
Peng Xiao ◽  
Aihong Kang ◽  
Zhengguang Wu

This paper aims to clarify the shear deformation behavior of double-layer asphalt mixtures using the virtual uniaxial penetration test (UPT) with a discrete element method. For this purpose, asphalt mixtures with two different nominal maximum aggregate sizes were designed for the preparation of double-layer wheel tracking test specimens. Then, the cylindrical cores were prepared from the specimens and were cut for capturing the longitudinal profile images. These images were used to reconstruct a two-dimensional discrete element model (DEM) of the uniaxial penetration test specimen. The results indicate that the shear deformation behavior of the asphalt mixtures showed corresponding changes under the virtual loading. The tensile and compressive stress were distributed unevenly within the upper layer after the test, and both coarse aggregates and asphalt mortars bore a greater shear stress. Therefore, cracks were more likely to occur in the upper layer, leading to the failure of the specimens. This process enhanced the bonding between the asphalt mortars and the mineral aggregates. The aggregate particles in the upper layer moved more vertically, while those in the lower layer generally moved more laterally under the virtual loading. This behavior reveals the rutting mechanism of asphalt pavement.


2021 ◽  
Vol 54 (5) ◽  
Author(s):  
M. Bueno ◽  
R. Haag ◽  
N. Heeb ◽  
P. Mikhailenko ◽  
L. Boesiger ◽  
...  

AbstractIncorporating crumb rubber (CR) using the dry process, directly in the asphalt mixture rather than into the bituminous binder requires no plant retrofitting, and therefore is the most practical industrial method for CR incorporation into asphalt mixtures. Nevertheless, very few large scale studies have been conducted. This work uses a holistic approach and reports on the functional and environmental performance of asphalt mixtures with different concentrations of CR fabricated employing the dry process in asphalt plants. Gaseous emissions were monitored during the production and laboratory leaching tests simulating the release of pollutants during rain, was conducted to evaluate the toxicology of both the CR material alone and the modified asphalt mixtures. In addition, laboratory compacted samples were tested to assess their fatigue behavior. Furthermore, noise relevant surface properties of large roller compacted slabs were evaluated before and after being subjected to a load simulator (MMLS3) to evaluate their resistance to permanent deformation. The results confirm that comparable performance can be achieved with the incorporation of CR using the dry process for high performance surfaces such as semi-dense asphalt, which usually require the use of polymer modified binders. Environmental performance improvement can be achieved by a washing step of the CR material that could remove polar CR additives which have commonly been used as vulcanization accelerator during rubber production.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2084 ◽  
Author(s):  
Piotr Mackiewicz ◽  
Antoni Szydło

We present two methods used in the identification of viscoelastic parameters of asphalt mixtures used in pavements. The static creep test and the dynamic test, with a frequency of 10 Hz, were carried out based on the four-point bending beam (4BP). In the method identifying viscoelastic parameters for the Brugers’ model, we included the course of a creeping curve (for static creep) and fatigue hysteresis (for dynamic test). It was shown that these parameters depend significantly on the load time, method used, and temperature and asphalt content. A similar variation of parameters depending on temperature was found for the two tests, but different absolute values were obtained. Additionally, the share of viscous deformations in relation to total deformations is presented, on the basis of back calculations and finite element methods. We obtained a significant contribution of viscous deformations (about 93% for the static test and 25% for the dynamic test) for the temperature 25 °C. The received rheological parameters from both methods appeared to be sensitive to a change in asphalt content, which means that these methods can be used to design an optimal asphalt mixture composition—e.g., due to the permanent deformation of pavement. We also found that the parameters should be determined using the creep curve for the static analyses with persistent load, whereas in the case of the dynamic studies, the hysteresis is more appropriate. The 4BP static creep and dynamic tests are sufficient methods for determining the rheological parameters for materials designed for flexible pavements. In the 4BP dynamic test, we determined relationships between damping and viscosity coefficients, showing material variability depending on the test temperature.


Author(s):  
Gerald A. Huber ◽  
Xishun Zhang ◽  
Robin Fontaine

The Strategic Highway Research Program (SHRP) spent $50 million researching asphalt binders and asphalt mixtures and provided three main products: an asphalt binder specification, an asphalt mixture specification, and Superpave, an asphalt mixture design system that encompasses both the binder and mixture specification. SHRP researchers have provided tools that promise more robust asphalt mixtures with reduced risk of premature failure. Implementation of the specifications and mix design system will require overcoming several obstacles. Superpave must be demonstrated to be practical and easy to use. The impact of Superpave aggregate requirements on aggregate availability must be determined. The Superpave gyratory compaction procedure has been uniquely defined and then calibrated to traffic volume. The reasonableness of this approach must be tested in widespread application. Perhaps the largest implementation hurdle exists in the performance models. Expensive test equipment is necessary to do the performance-based tests. The performance predictions must be established as reasonable to justify the cost. A highway reconstruction project containing three Superpave Level 1 mix designs is documented including quality control done with the Superpave gyratory compactor. Superpave Level 2 performance-based tests were carried out to predict permanent deformation of the design and the mixture as constructed. The performance-based engineering properties obtained from the tests are evaluated, and the reasonableness of the performance prediction models is discussed.


2011 ◽  
Vol 225-226 ◽  
pp. 577-580
Author(s):  
Yong Ye ◽  
Yi Zhou Cai

The objective of this study is to investigate and evaluate the effect of fine aggregates (aggregate size smaller than or equal to 2.36 mm) on the compressive strength and creep behavior of asphalt mixtures. The variables that are considered in the study include the sizes and gradations of fine aggregate. A kind of standant aggregate gradation and four kinds of reduced aggregate gradation mixture specimens are used. Uniaxial compression and static creep tests were realized at different loading conditions. The test results showed that the different fine aggregate sizes do not result in significant differences in compressive strength and creep values using the same percentage of fine aggregates (38.4%). Only the different gradations showed a little differences for mixtures made with different gradations but same aggregate size (between 2.36 and 1.18 mm).


Sign in / Sign up

Export Citation Format

Share Document