scholarly journals Low Scattering Microstrip Antenna Based on Broadband Artificial Magnetic Conductor Structure

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 750 ◽  
Author(s):  
Muhammad Saleem ◽  
Xiao-Lai Li

In this summary, we have suggested a new technique in which destructive interference principle is incorporated into a chessboard like a reflective screen, and the proposed antenna realizes a remarkable in-band and also out-of-band backscattered energy reduction by using a metasurface (MS). Two different MS unit cells are designed to provide the resonant frequency with a zero-degree reflection phase. Metasurface unit cells are configured in a chessboard-like reflector screen to achieve the reflection phase difference of 180° ± 37° over a broadband range of frequencies to redirect the scattering field into four quadrants. It is implemented to reduce the backscattered energy level of the microstrip antenna, which is based on destructive interference principle. The simulations indicate that the proposed antenna possesses significant backscattered energy reduction from 6 GHz to 16 GHz in both x– and y– polarization and also −10 dB backscattering reduction at antenna working band (7.4–7.8 GHz) is covered. Moreover, the radiation performance is preserved well and artificial magnetic conductor (AMC) unit cells work at different frequencies which are not influenced on the radiation properties. The bistatic performance of the antenna at different frequencies is also presented. Measurements and simulations of the fabricated design coincide well and the proposed design is verified and validated successfully.

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Fuwei Wang ◽  
Yuhui Ren ◽  
Ke Li

This paper proposes a new method to the broadband RCS reduction with the artificial magnetic conductor (AMC) surfaces. The AMC surfaces can introduce a zero-degree reflection phase shift to incident waves. The phase difference between the antenna and AMC structures is 180°. Therefore, the AMC structures can be used to achieve RCS reduction. However, the bandwidth of zero-degree reflection phase of AMC structures is very narrow. In light of this, a novel gradually concentric ring arrangement AMC (GCRA-AMC) which can be applied to achieve the broadband RCS reduction is presented. The simulated and measured results show that the radiation performance of antennas is preserved when the GCRA-AMC is used. The RCS of the antenna with GCRA-AMC has been considerably reduced in a broad frequency band. The largest RCS reduction is more than 17 dB.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Oh Heon Kwon ◽  
Sungwoo Lee ◽  
Jong Min Lee ◽  
Keum Cheol Hwang

A compact and low-profile log-periodic meandered dipole array (LPMDA) antenna with an artificial magnetic conductor (AMC) is proposed. For compactness, a meander line configuration is implemented with dipole elements and optimized using a genetic algorithm (GA) to realize the LPMDA antenna. As a result, a size reduction of approximately 30% is achieved as compared to a conventional log-periodic dipole array antenna. To enhance the gain characteristics, the AMC ground plane configuration is realized with 9 × 9 unit cells for the LPMDA antenna. Two prototypes of the proposed LPMDA antennas with and without an AMC are fabricated and measured to verify its performance. The measured −10 dB reflection ratio bandwidths are 2.56 : 1 (0.85–2.18 GHz) and 2.34 : 1 (0.92–2.16 GHz) for the proposed LPMDA antennas with and without the AMC, respectively. The gain at the main beam direction within the operating frequency bandwidth is significantly improved from 3.94–7.17 dBi to 7.86–10.01 dBi by applying the AMC.


Sign in / Sign up

Export Citation Format

Share Document