scholarly journals Precipitation Strengthening of Cu–Ni–Si Alloy

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1182 ◽  
Author(s):  
Beata Krupińska ◽  
Zbigniew Rdzawski ◽  
Mariusz Krupiński ◽  
Wojciech Pakieła

The work examines the effect of rhenium addition on the structure and properties of Cu–2Ni–1Si alloys. The aim of this work was to answer the question of how the addition of rhenium will affect the strengthening mechanisms of rhenium-modified, saturated, plastically deformed and aged Cu–2Ni–1Si alloys. How will this affect the crystallization process? What effect will it have on the properties? Scanning electron microscopy (SEM) and analysis of chemical composition in microareas (energy-dispersive X-ray spectroscopy, EDS), light microscopy, measurements of microhardness and conductivity of the alloys were used for the investigations. Research on chemical and phase composition were carried out with application of transmission electron microscopy (TEM), and scanning transmission electron microscopy (STEM). Modification with rhenium has caused an increase in hardness as a result of precipitation of small phases with rhenium. As the effect of supersaturation, cold plastic treatment as well as aging small phases with rhenium with a size of 200 nm to 600 nm causes both reinforcement of the alloy and makes recrystallization impossible. Re-addition also influences the stabilization of the structure.

2020 ◽  
Vol 2 (10) ◽  
Author(s):  
Melek Kızaloğlu Akbulut ◽  
Christina Harreiß ◽  
Mario Löffler ◽  
Karl J. J. Mayrhofer ◽  
Michael Schöbitz ◽  
...  

Abstract Proccessible FePt3 alloy nanoparticles with sizes smaller than 50 nm open the avenue to novel magnetic sensor, catalytic and biomedical applications. Our research objective was to establish a highly scalable synthesis technique for production of single-crystalline FePt3 alloy nanoparticles. We have elaborated a one-pot thermal decomposition technique for the synthesis of superparamagnetic FePt3 nanoparticles (FePt3 NPs) with mean sizes of 10 nm. Subsequent tiron coating provided water solubility of the FePt3 NPs and further processibility as bidental ligands enable binding to catalyst surfaces, smart substrates or biosensors. The chemical composition, structure, morphology, magnetic, optical and crystallographic properties of the FePt3 NPs were examined using high resolution transmission electron microscopy, high-angle annular dark field-scanning transmission electron microscopy, scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy mapping, Fourier transform infrared-attenuated total reflection, X-ray powder diffraction, X-ray photoelectron spectroscopy, vibrating sample magnetometry and UV–Vis absorption spectroscopy.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 551 ◽  
Author(s):  
Otman Bazta ◽  
Ana Urbieta ◽  
Susana Trasobares ◽  
Javier Piqueras ◽  
Paloma Fernández ◽  
...  

Pure and Ce-modified ZnO nanosheet-like polycrystalline samples were successfully synthesized by a simple and fast microwave-based process and tested as photocatalytic materials in environmental remediation processes. In an attempt to clarify the actual relationships between functionality and atomic scale structure, an in-depth characterization study of these materials using a battery of complementary techniques was performed. X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-Ray spectroscopy-scanning transmission electron microscopy (STEM-XEDS), photoluminescence spectroscopy (PL) and UV–Visible absorption spectroscopy were used to evaluate the effect of Ce ions on the structural, morphological, optical and photocatalytic properties of the prepared ZnO nanostructures. The XRD results showed that the obtained photocatalysts were composed of hexagonal, wurtzite type crystallites in the 34–44 nm size range. The SEM and TEM showed nanosheet-shaped crystallites, a significant fraction of them in contact with bundles of randomly oriented and much smaller nanoparticles of a mixed cerium–zinc phase with a composition close to Ce0.68Zn0.32Ox. Importantly, in clear contrast to the prevailing proposals regarding this type of materials, the STEM-XEDS characterization of the photocatalyst samples revealed that Ce did not incorporate into the ZnO crystal lattice as a dopant but that a heterojunction formed between the ZnO nanosheets and the Ce–Zn mixed oxide phase nanoparticles instead. These two relevant compositional features could in fact be established thanks to the particular morphology obtained by the use of the microwave-assisted hydrothermal synthesis. The optical study revealed that in the ZnO:Ce samples optical band gap was found to decrease to 3.17 eV in the samples with the highest Ce content. It was also found that the ZnO:Ce (2 at.%) sample exhibited the highest photocatalytic activity for the degradation of methylene blue (MB), when compared to both the pure ZnO and commercial TiO2-P25 under simulated sunlight irradiation. The kinetics of MB photodegradation in the presence of the different photocatalysts could be properly described using a Langmuir–Hinshelwood (LH) model, for which the ZnO:Ce (2 at.%) sample exhibited the highest value of effective kinetic constant.


Sign in / Sign up

Export Citation Format

Share Document