scholarly journals Effect of CeO2 Nanoparticles on Interface of Cu/Al2O3 Ceramic Clad Composites

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1240
Author(s):  
YaBo Fu ◽  
HaoNan Chen ◽  
ZhiQiang Cao ◽  
YanQiu Huo

Cu/Al2O3 ceramic clad composites are widely used in electronic packaging and electrical contacts. However, the conductivity and strength of the interfacial layer are not fit for the demands. So CeO2 nanoparticles 24.3 nm in size, coated on Al2O3 ceramic, promote a novel CeO2–Cu2O–Cu system to improve the interfacial bonded strength. Results show that the atom content of O is increased to approximately 30% with the addition of CeO2 nanoparticles compared with the atom content without CeO2 in the interfacial layer of Cu/Al2O3 ceramic clad composites. CeO2 nanoparticles coated on the surface of Al2O3 ceramics can easily diffuse into the metallic Cu layer. CeO2 nanoparticles can accelerate to form the eutectic liquid of Cu2O–Cu as they have strong functions of storing and releasing O at an Ar pressure of 0.12 MPa. The addition of CeO2 nanoparticles is beneficial for promoting the bonded strength of the Cu/Al2O3 ceramic clad composites. The bonded strength of the interface coated with nanoparticles of CeO2 is increased to 20.8% compared with that without CeO2; moreover, the electric conductivity on the side of metallic Cu is 95% IACS. The study is of great significance for improving properties of Cu/Al2O3 ceramic clad composites.

1996 ◽  
Vol 143 (2) ◽  
pp. 143-146 ◽  
Author(s):  
M.P. Filippakou ◽  
C.G. Karagiannopoulos ◽  
P.D. Bourkas

Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.


2003 ◽  
Vol 765 ◽  
Author(s):  
S. Van Elshocht ◽  
R. Carter ◽  
M. Caymax ◽  
M. Claes ◽  
T. Conard ◽  
...  

AbstractBecause of aggressive downscaling to increase transistor performance, the physical thickness of the SiO2 gate dielectric is rapidly approaching the limit where it will only consist of a few atomic layers. As a consequence, this will result in very high leakage currents due to direct tunneling. To allow further scaling, materials with a k-value higher than SiO2 (“high-k materials”) are explored, such that the thickness of the dielectric can be increased without degrading performance.Based on our experimental results, we discuss the potential of MOCVD-deposited HfO2 to scale to (sub)-1-nm EOTs (Equivalent Oxide Thickness). A primary concern is the interfacial layer that is formed between the Si and the HfO2, during the MOCVD deposition process, for both H-passivated and SiO2-like starting surfaces. This interfacial layer will, because of its lower k-value, significantly contribute to the EOT and reduce the benefit of the high-k material. In addition, we have experienced serious issues integrating HfO2 with a polySi gate electrode at the top interface depending on the process conditions of polySi deposition and activation anneal used. Furthermore, we have determined, based on a thickness series, the k-value for HfO2 deposited at various temperatures and found that the k-value of the HfO2 depends upon the gate electrode deposited on top (polySi or TiN).Based on our observations, the combination of MOCVD HfO2 with a polySi gate electrode will not be able to scale below the 1-nm EOT marker. The use of a metal gate however, does show promise to scale down to very low EOT values.


2011 ◽  
Vol 39 (1) ◽  
pp. 20-43 ◽  
Author(s):  
A. Ashirgade ◽  
P. B. Harakuni ◽  
W. J. Vanooij

Abstract Adhesion between rubber compound and brass-plated steel tire cord is crucial in governing the overall performance of tires. The rubber-brass interfacial adhesion is influenced by the chemical composition and thickness of the interfacial layer. It has been shown that the interfacial layer consists mainly of sulfides and oxides of copper and zinc. This paper discusses the effect of changes in the chemical composition and the structure of the interfacial layers due to addition of adhesion promoter resins. Grazing incidence x-ray diffraction (GIXRD) experiments were run on sulfidized polished brass coupons previously bonded to five experimental rubber compounds. It was confirmed that heat and humidity conditions lead to physical and chemical changes of the rubber-steel tire cord interfacial layer, closely related to the degree of rubber-brass adhesion. Morphological transformation of the interfacial layer led to loss of adhesion after aging. The adhesion promoter resins inhibit unfavorable morphological changes in the interfacial layer, thus stabilizing it during aging and prolonging failure. Tire cord adhesion tests illustrated that the one-component resins improved adhesion after aging using a rubber compound with lower cobalt loading. Based on the acquired diffraction profiles, these resins were also found to impede crystallization of the sulfide layer after aging, leading to improved adhesion. Secondary ion mass spectrometry depth profiles and scanning electron microscopy micrographs strongly corroborated the findings from GIXRD. This interfacial analysis adds valuable information to our understanding of the complex nature of the rubber-brass bonding mechanism.


2009 ◽  
Vol 8 (5) ◽  
pp. 1029-1033
Author(s):  
Gabriela Apostolescu ◽  
Nicolae Apostolescu ◽  
Gabriela Carja ◽  
Elena Husanu

2020 ◽  
pp. 67-78
Author(s):  
A. V. Shchegolkov ◽  
◽  
V. S. Yagubov ◽  
Yu. A. Khan ◽  
F. F. Komarov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document