scholarly journals Experimental and Constitutive Model on Dynamic Compressive Mechanical Properties of Entangled Metallic Wire Material under Low-Velocity Impact

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1396 ◽  
Author(s):  
Yiwan Wu ◽  
Shangzhou Li ◽  
Hongbai Bai ◽  
Lei Jiang ◽  
Hu Cheng

In this paper, the dynamic compressive mechanical properties of entangled metallic wire material (EMWM) under low-velocity impact were investigated and the constitutive model for EMWM under low-velocity impact was established. The research in this paper is based on a series of drop-hammer tests. The results show that the energy absorption rate of EMWM is in the range from 50% to 85%. Moreover, the EMWM with a higher relative density would not plastically deform macroscopically and has excellent characteristics of repetitive energy absorption. With the increase in relative density, the maximum deformation of EMWM decreases gradually, and the impact force of EMWM increases gradually. With the increase in impact-velocity, the phenomenon of stiffness softening before reaching the maximum deformation of EMWM becomes more significant. A constitutive model for EMWM based on the Sherwood–Frost model was established to predict the dynamic compressive mechanical properties of EMWM. The accuracy of the model was verified by comparing the calculated results with the experimental data of the EMWM with different relative densities under different impact-velocities. The comparison results show that the established model can properly predict the dynamic compressive mechanical characteristics of EMWM under low-velocity impact loading.

Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3392 ◽  
Author(s):  
Yiwan Wu ◽  
Lei Jiang ◽  
Hongbai Bai ◽  
Chunhong Lu ◽  
Shangzhou Li

In this paper, the stiffness and damping property of entangled metallic wire materials (EMWM) under quasi-static and low-velocity impact loading were investigated. The results reveal that the maximum deformation of the EMWM mainly depends on the maximum load it bears, and that air damping is the main way to dissipate impact energy. The EMWM can absorb more energy (energy absorption rate is over 60%) under impact conditions. The EMWM has excellent characteristics of repetitive energy absorption.


2020 ◽  
Vol 191 ◽  
pp. 108599 ◽  
Author(s):  
M.A. Islam ◽  
M.A. Kader ◽  
P.J. Hazell ◽  
J.P. Escobedo ◽  
A.D. Brown ◽  
...  

2019 ◽  
Vol 165 ◽  
pp. 247-254 ◽  
Author(s):  
Lin Xiao ◽  
Guanhui Wang ◽  
Si Qiu ◽  
Zhaoxiang Han ◽  
Xiaodan Li ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2129 ◽  
Author(s):  
Radek Vrána ◽  
Ondřej Červinek ◽  
Pavel Maňas ◽  
Daniel Koutný ◽  
David Paloušek

Selective laser melting (SLM) is an additive technology that allows for the production of precisely designed complex structures for energy absorbing applications from a wide range of metallic materials. Geometrical imperfections of the SLM fabricated lattice structures, which form one of the many thin struts, can lead to a great difference in prediction of their behavior. This article deals with the prediction of lattice structure mechanical properties under dynamic loading using finite element method (FEA) with inclusion of geometrical imperfections of the SLM process. Such properties are necessary to know especially for the application of SLM fabricated lattice structures in automotive or aerospace industries. Four types of specimens from AlSi10Mg alloy powder material were manufactured using SLM for quasi-static mechanical testing and determination of lattice structure mechanical properties for the FEA material model, for optical measurement of geometrical accuracy, and for low-velocity impact testing using the impact tester with a flat indenter. Geometries of struts with elliptical and circular cross-sections were identified and tested using FEA. The results showed that, in the case of elliptical cross-section, a significantly better match was found (2% error in the Fmax) with the low-velocity impact experiments during the whole deformation process compared to the circular cross-section. The FEA numerical model will be used for future testing of geometry changes and its effect on mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document