scholarly journals Microstructure and Texture Evolution of AZ31 Alloy Prepared by Cyclic Expansion Extrusion with Asymmetrical Extrusion Cavity at Different Temperatures

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3757
Author(s):  
Jie Zheng ◽  
Zhaoming Yan ◽  
Qiang Wang ◽  
Zhimin Zhang ◽  
Yong Xue

This work is to study the microstructure and texture evolution of AZ31 alloy prepared by cyclic expansion extrusion with an asymmetrical extrusion cavity (CEE-AEC) at different deformation temperatures. The result shows AZ31 alloy undergoes continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX) during CEE-AEC processing. At the initial stage of deformation, AZ31 alloys exhibit similar bimodal microstructure of coarse deformed grains surrounded by fine DRXed grains. As the passes increase, the cumulative strain increases, and the coarse grains of all samples are almost replaced by fine equiaxed grains. The average grain sizes and the basal texture intensities of the deformed samples increase as the deformation temperature increases. In addition, due to the existence of an asymmetrical cavity, as the passes increase, the basal textures of all samples are deflected with maximum intensities increase, and even an unusual bimodal texture is formed, resulting in a soft orientation that is easy to basal slip.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4932
Author(s):  
Guoqin Wu ◽  
Jianmin Yu ◽  
Leichen Jia ◽  
Wenlong Xu ◽  
Beibei Dong ◽  
...  

Reciprocating Upsetting-Extrusion (RUE) deformation process can significantly refine the grains size and weaken the basal plane texture by applying a large cumulative strain to the alloy, which is of great significance to weaken the anisotropy of magnesium (Mg) alloys and increase the application range. In this paper, the Mg-8.27Gd-3.18Y-0.43Zr (wt %) alloy was subjected to isothermal multi-passes RUE. The microstructure and texture evolution, crystal orientation-dependent deformation mechanism of the alloy after deformation were investigated. The results clearly show that with the increase of RUE process, the grains are significantly refined through continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX) mechanisms, the uniformity of the microstructure is improved, and the texture intensity is reduced. At the same time, a large number of particle phases are dynamically precipitated during the deformation process, promoting grain refinement by the particle-stimulated nucleation (PSN) mechanism. The typical [10-10] fiber texture is produced after one pass due to the basal plane of the deformed grains with a relatively high proportion is gradually parallel to the ED during extrusion process. However, the texture concentration is reduced compared with the traditional extrusion deformation, indicating that the upsetting deformation has a certain delay effect on the subsequent extrusion texture generation. After three or four passes deformation, the grain orientation is randomized due to the continuous progress of the dynamic recrystallization process.


Author(s):  
S. M. Lim ◽  
C. Desrayaud ◽  
F. Montheillet

The development of ideal orientations within the steady-state region of hot torsion flow curves of fcc and bcc metals undergoing “continuous” dynamic recrystallization is analyzed. It is well known that in fcc metals, e.g., Al deformed at 400°C and above, the experimentally observed end texture consists of the twin-symmetric B(112¯)[11¯0]/B¯(1¯1¯2)[1¯10] component, whereby the (hkl)[uvw] indices correspond to the shear plane z and the shear direction θ, respectively. In bcc iron however, only one of the self-symmetric D1(112¯)[111] and D2(1¯1¯2)[111] components dominates (the former in the case of positive shear or clockwise rotation about the r-axis, and the latter during negative shear). The tendency toward a single end orientation imposes certain limitations on grain refinement, as this would ultimately imply the coalescence of subgrains of or close to this orientation, and therefore the disappearance of existing high angle boundaries (≥15 deg). It is believed that the preference of D1 over D2, or vice versa, could be related to phenomena other than glide-induced rotations, e.g., grain boundary migration resulting from differences in work hardening rates. In this paper, the standard Taylor model is first used to predict the texture evolution in simple shear under the full-constraint rate-sensitive scheme. This is then coupled with an approach that takes into account grain boundary migration resulting from differences in dislocation densities within grains of varying orientations. The preliminary results are in agreement with experimental findings, i.e., grains with initial orientations close to D2 grow at the expense of neighboring grains during negative shear and vice versa.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2773 ◽  
Author(s):  
Ping Xu ◽  
Jianmin Yu ◽  
Zhimin Zhang

Mg–13Gd–4Y–2Zn–0.5Zr alloy was subjected to compression–torsion deformation at 450 °C with a strain rate of 0.001–0.5 s−1 using a Gleeble 3500 torsion unit. The effects of compression–torsion deformation on the microstructure and texture were studied, and the results showed that with the decrease of strain rate, the texture strength decreased, the number of dynamic precipitated particles increased, the degree of recrystallization increased, and the dynamic recrystallization mechanism changed from a continuous dynamic recrystallization mechanism to a continuous and discontinuous dynamic recrystallization mechanism. Along the direction of increasing radius, the degree of dynamic recrystallized grain (DRX) increased, the number of dynamic precipitated particles increased, and the texture strength slightly increased.


2021 ◽  
Author(s):  
Marta Kuczynska ◽  
Ulrich Becker ◽  
Youssef Maniar ◽  
Steffen Weihe

Abstract The reoccurring cyclic load imposed onto soldered electronic components during their operation time leads to accumulation of inelastic strains in the structure. On a microscale level, the degree of plastic deformation is determined by the formation and annihilation of dislocations, leading to continuous refinement by creation of new grain boundaries, precipitates relocation and growth. This microstructure rearrangement, triggered by an increasing amount of inelastic deformation, is defined as dynamic recrystallization. This work presents a macroscale modelling approach for the description of continuous dynamic recrystallization observed in Sn-based solder connections. The model used in this work describes kinetics of macroscopic gradual evolution of equivalent grain size, where the initial grain size is continuously refined with increasing accumulated inelastic strain until a saturation grain size is reached. The rate and distribution of dynamic recrystallization is further numerically modelled dependent on the effective accumulated inelastic strain and governing stress multiaxiality. A parameter study of the presented model and its employment in finite element (FE) simulation is further described. Finally, FE simulation of the grain size evolution is demonstrated on an example of a bulky sample under isothermal cyclic mechanical loading, as well as a BGA-like structure under tensile, shear and mixed mode cyclic load.


2020 ◽  
Vol 822 ◽  
pp. 153282 ◽  
Author(s):  
David Canelo-Yubero ◽  
Zsolt Kovács ◽  
J.F. Thierry Simonet Fotso ◽  
Domonkos Tolnai ◽  
Norbert Schell ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yong Xue ◽  
Shuaishuai Chen ◽  
Haijun Liu ◽  
Zhimin Zhang ◽  
Luying Ren ◽  
...  

The microstructure, deformation mechanisms, dynamic recrystallization (DRX) behavior, and texture evolution of AZ80 magnesium alloy were investigated by three-pass cyclic expansion-extrusion (CEE) tests. Optical microscopy (OM), electron back-scattered diffraction (EBSD), and X-ray diffraction (XRD) were employed to study microstructure, grain orientation, DRX mechanism, and texture evolution. The results show that the grain sizes decrease continuously with the increase of CEE pass. The grain refinement effect of the first pass is the most remarkable, and there appear a large number of twins. After three-pass CEE, a well-distributed structure with fine equiaxed grains is obtained. With the increase of CEE pass, the deformation mechanism changes from twinning to slipping and the DRX mechanism changes mainly from twinning-induced dynamic recrystallization (TDRX) to rotation dynamic recrystallization (RDRX) and then to continuous dynamic recrystallization (CDRX). The grain misorientation between the new grains and matrix grains deceases gradually, and a relatively small angle misorientation is obtained after three-pass CEE. Grain misorientations of the first two passes are attributed to TDRX and RDRX behaviors, respectively. The grain refinement changes the deformation and DRX mechanisms of CEE process, which leads the (0002) basal texture intensity first decrease and then increase suddenly. Eventually, the extremely strong basal texture is formed after three-pass CEE.


Sign in / Sign up

Export Citation Format

Share Document