scholarly journals Experimental Study on Concrete under Combined FRP–Steel Confinement

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4467 ◽  
Author(s):  
Stefan Kaeseberg ◽  
Dennis Messerer ◽  
Klaus Holschemacher

The confinement of reinforced concrete (RC) compression members by fiber-reinforced polymers (FRPs) is an effective measure for the strengthening and retrofitting of existing structures. Thus far, extensive research on the stress–strain behavior and ultimate limit state design of FRP-confined concrete has been conducted, leading to various design models. However, these models are significantly different when compared to one another. In particular, the use of certain empirical efficiency and reduction factors results in various predictions of load-bearing behavior. Furthermore, most experimental programs solely focus on plain concrete specimens or demonstrate insufficient variation in the material properties. Therefore, this paper presents a comprehensive experimental study on plain and reinforced FRP-confined concrete, limited to circular cross sections. The program included 63 carbon FRP (CFRP)-confined plain and 60 CFRP-confined RC specimens with a variation in the geometries and in the applied materials. The analysis showed a significant influence of the compressive strength of the confined concrete on the confinement efficiency in the design methodology, as well as the importance of the proper determination of individual reduction values for different FRP composites. Finally, applicable experimental test results from the literature were included, enabling the development of a modified stress–strain and ultimate condition design model.

2013 ◽  
Vol 405-408 ◽  
pp. 706-709 ◽  
Author(s):  
Yue Ling Long ◽  
Jiang Zhu

Eight concrete columns with various sizes confined by CFRP and four plain concrete columns as the control specimens were axially loaded to failure in order to investigate size effects in concrete columns confined by CFRP. Experimental results show that CFRP can increase considerably both the capacity and ductility of the concrete specimens. Furthermore, the peak stress of the unconfined concrete decreases with the size of the specimens increasing. Similarly, the peak stress of confined concrete decreases with the size of the specimens increasing when the lateral confining stresses are the same. Hence, the size effects should be considered in the stress-strain model of concrete confined by CFRP.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 811
Author(s):  
Afaq Ahmad ◽  
Vagelis Plevris ◽  
Qaiser-uz-Zaman Khan

Recently, the use of fiber-reinforced polymers (FRP)-confinement has increased due to its various favorable effects on concrete structures, such as an increase in strength and ductility. Therefore, researchers have been attracted to exploring the behavior and efficiency of FRP-confinement for concrete structural elements further. The current study investigates improved strength and strain models for FRP confined concrete cylindrical elements. Two new physical methods are proposed for use on a large preliminary evaluated database of 708 specimens for strength and 572 specimens for strain from previous experiments. The first approach is employing artificial neural networks (ANNs), and the second is using the general regression analysis technique for both axial strength and strain of FRP-confined concrete. The accuracy of the newly proposed strain models is quite satisfactory in comparison with previous experimental results. Moreover, the predictions of the proposed ANN models are better than the predictions of previously proposed models based on various statistical indices, such as the correlation coefficient (R) and mean square error (MSE), and can be used to assess the members at the ultimate limit state.


2011 ◽  
Vol 94-96 ◽  
pp. 1983-1988
Author(s):  
Jia Song ◽  
Zhen Bao Li ◽  
Yong Ping Xie ◽  
Xiu Li Du ◽  
Yue Gao

An experimental study was made of the mechanical properties of large scale confined concrete subjected to the axial compression test. Eleven tied concrete columns and six plain concrete prisms were tested. In the test, each specimen had the same transverse reinforcement configuration, and similar volumetric ratio of lateral steel, while different size. The test results in this paper indicate that the size of the specimen has no obvious relationship with the ultimate strength, however, it does affect the post-peak ductility to some extent. As a supplement to the experimental study, a finite element method was adopted to imitate the mechanical behavior of the confined concrete under axial compression. The results of the imitation in this paper indicate the confinement mechanism of large scale specimens.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Bin Wang ◽  
Wenzhe Cai ◽  
Qingxuan Shi

Sectional deformation quantities, such as curvature and ductility, are of prime significance in the displacement-based seismic design and performance evaluation of structural members. However, few studies on the estimates of curvatures at different limit states have been performed on asymmetric flanged walls. In this paper, a parametric study was performed for a series of T-shaped wall cross-sections based on moment-curvature analyses. By investigating the effects of the axial load ratio, reinforcement content, material properties, and geometric parameters on curvatures at the yield and ultimate limit state, we interpret the variation in curvature with different influencing factors in detail according to the changes of the neutral axis depth. Based on the regression analyses of the numerical results of 4941 T-shaped cross-sections, simple expressions to estimate the yield curvature and ultimate curvature for asymmetric flanged walls are developed, and simplified estimates of the ductility capacity including curvature ductility and displacement ductility are further deduced. By comparing with the experimental results, we verify the accuracy of the proposed formulas. Such simple expressions will be valuable for the determination of the displacement response of asymmetric flanged reinforced concrete walls.


2015 ◽  
Vol 1119 ◽  
pp. 760-765
Author(s):  
Thomas Vincent ◽  
Togay Ozbakkloglu

This paper reports on an experimental investigation on the influence of FRP-to-concrete interface gap, caused by concrete shrinkage, on axial compressive behavior of concrete-filled FRP tube (CFFT) columns. A total of 12 aramid FRP (AFRP)-confined concrete specimens with circular cross-sections were manufactured. 3 of these specimens were instrumented to monitor long term shrinkage strain development and the remaining 9 were tested under monotonic axial compression. The influence of concrete shrinkage was examined by applying a gap of up to 0.06 mm thickness at the FRP-to-concrete interface, simulating 800 microstrain of shrinkage in the radial direction. Axial strain recordings were compared on specimens instrumented with two different measurement methods: full-and mid-height linear variable displacement transformers (LVDTs). Results of the experimental study indicate that the influence of interface gap on stress-strain behavior is significant, with an increase in interface gap resulting in a decrease and increase in the compressive strength and ultimate axial strain, respectively. It was also observed that an increase in interface gap leads to a slight loss in axial stress at the transition region of the stress-strain curve. Finally, it is found that an increase in the interface gap results in a significant decrease in the ratio of the ultimate axial strains obtained from mid-section and full-height LVDTs.


2013 ◽  
Vol 351-352 ◽  
pp. 650-653 ◽  
Author(s):  
Thomas Vincent ◽  
Togay Ozbakkloglu

This paper presents an experimental investigation on the influence of confinement method and specimen end condition on axial compressive behavior of fiber reinforced polymer (FRP)-confined concrete. A total of 12 aramid FRP (AFRP)-confined concrete specimens with circular cross-sections were tested. Half of these specimens were manufactured as concrete-filled FRP tubes (CFFTs) and the remaining half were FRP-wrapped concrete cylinders. The effect of specimen end condition was examined on both CFFTs and FRP-wrapped specimens. This parameter was selected to study the influence of loading the FRP jacket on the axial compressive behavior. In this paper the experimentally recorded stress-strain relationships are presented graphically and key experimental outcomes discussed. The results indicate that the performance of FRP-wrapped specimens is similar to that of CFFT specimens and the influence of specimen end condition is negligible.


Sign in / Sign up

Export Citation Format

Share Document