scholarly journals Effect of Chopped ZrO2 Fiber Content on the Microstructure and Properties of CaO-Based Integral Ceramic Mold

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5398
Author(s):  
Qiang Yang ◽  
Fu Wang ◽  
Dichen Li

A chopped ZrO2 fiber (ZrO2(f)) reinforced CaO-based integral ceramic mold was successfully fabricated by stereolithography (SLA) and tert-butyl alcohol (TBA)-based gel-casting, and the effect of chopped ZrO2(f) content on properties of the ceramic mold was investigated. The results show that the ZrO2(f) content had a significant effect on the viscosity of CaO-based ceramic slurry, which directly affects the filling ability of slurry in complex structures of the integral mold. The tiny structures of the ceramic mold cannot be filled completely with a ZrO2(f) content exceeding 3 vol %. The sample fabricated with 3 vol % fiber content showed a harmonious microstructure and exhibited an excellent comprehensive performance with 25 °C bending strength of 22.88 MPa, an 1200 °C bending strength of 15.74 MPa, a 1200 °C deflection of 0.86 mm, and a sintering shrinkage of 0.40%, which can meet the requirements of casting very well.

2020 ◽  
Author(s):  
Qiang Yang ◽  
Fu Wang ◽  
Dichen Li

Abstract A chopped ZrO2 fiber (ZrO2 (f)) reinforced CaO-based integral ceramic mold was successfully fabricated by stereolithography (SLA) and tert-butyl alcohol (TBA)-based gel-casting, and the effect of chopped ZrO2 (f) content on properties of the ceramic mold was investigated. The results show that the ZrO2 (f) content had a significant effect on the viscosity of CaO-based ceramic slurry, which directly affects the filling ability of the ceramic slurry in complex structures of the integral mold. The tiny structures of the ceramic mold cannot be filled completely with a ZrO2 (f) content exceed 3 vol%. When the content of ZrO2 (f) was 3 vol%, the ceramic slurry could meet the requirement of gel-casting with a viscosity of 0.84 Pa·s. The ZrO2 (f) content played an important role in tailoring properties of the ceramic mold, the sample fabricated with 3 vol% fiber content showed a harmonious microstructure and exhibited an excellent comprehensive performance with a room temperature (25 ºC) bending strength of 22.88 MPa, the elevated temperature bending strength (1200 ºC) of 15.74 MPa, the elevated temperature (1200 ºC) deflection of 0.86 mm and the sintering shrinkage of 0.40%, which can meet the requirements of casting very well.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 934 ◽  
Author(s):  
Qiang Yang ◽  
Weijun Zhu ◽  
Zhongliang Lu ◽  
Dichen Li ◽  
Zhongrui Wang ◽  
...  

A high-performance CaO-based integral ceramic mould was fabricated for investment casting by stereolithography (SLA) and non-aqueous gelcasting. The rheology of tert-butyl alcohol (TBA)-based CaO slurries and the effect of gelation parameters on the gelation time and strength of the green body were investigated to obtain a high-quality green body of the CaO-based integral ceramic mould. Then the pre-sintering and sintering processes were optimized to avoid cracks, reduce the sintering shrinkage, and improve the strength of CaO-based ceramic mould. The results showed that the CaO-based slurry with 56 vol % solid loading and 3 wt % dispersant content exhibited high stability and good flowability. The optimized gelation parameters were determined to be a monomer content of 20 wt %, a ratio of crosslinker to monomer of 0.06, an initiator content of 1 wt % and a gelation temperature of 40 °C. A reasonable sintering regime was identified to avoid cracks and guarantee a low shrinkage of 0.6%, a room temperature bending strength of 14.12 MPa and a high temperature (1200 °C) strength of 8.22 MPa. The CaO-based integral ceramic mould fabricated in this study has many advantages including excellent thermal stability, reaction-resistance to molten active alloys, ease of dissolution, and enhanced efficiency and economy in comparison to SiO2 or Al2O3 ceramic moulds.


2018 ◽  
Vol 44 (12) ◽  
pp. 13580-13587 ◽  
Author(s):  
Xinghui Hou ◽  
Zhenli Liu ◽  
Zongquan Liu ◽  
Lei Yuan ◽  
Jingkun Yu

1993 ◽  
Vol 58 (5) ◽  
pp. 1001-1006 ◽  
Author(s):  
Oľga Vollárová ◽  
Ján Benko

The kinetics of oxidation of [Co(en)2SCH2COO]+ with S2O82- was studied in water-methanol and water-tert-butyl alcohol mixtures. Changes in the reaction activation parameters ∆H≠ and ∆S≠ with varying concentration of the co-solvent depend on the kind of the latter, which points to a significant role of salvation effects. The solvation effect on the reaction is discussed based on a comparison of the transfer functions ∆Ht0, ∆St0 and ∆Gt0 for the initial and transition states with the changes in the activation parameters accompanying changes in the CO-solvent concentration. The transfer enthalpies of the reactant were obtained from calorimetric measurements.


2000 ◽  
Vol 65 (9) ◽  
pp. 1455-1463
Author(s):  
Oľga Vollárová ◽  
Ján Benko

The solubility, partial molar volume and standard integral molar enthalpy of solution of cis- and trans-[CoCl2(en)2]Cl in water, aqueous methanol, aqueous tert-butyl alcohol and aqueous acetonitrile are reported. The transfer functions ∆Gt0, ∆Ht0 and T∆St0 as well as partial molar volumes are used to obtain information on the solute-solvent interactions. Results obtained are discussed in terms of differences in the surface charge distribution in isomeric coordination species.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2532 ◽  
Author(s):  
Md. Nahid Pervez ◽  
Felix Y. Telegin ◽  
Yingjie Cai ◽  
Dongsheng Xia ◽  
Tiziano Zarra ◽  
...  

In this study, a Fenton-activated persulfate (Fe2+/PS) system was introduced for the efficient degradation of Mordant Blue 9 (MB 9) as a textile dye in an aqueous solution. Results showed that the degradation of MB 9 was markedly influenced by operational parameters, such as initial pH, PS concentration, Fe2+ concentration, and initial dye concentration. Optimal reaction conditions were then determined. Inorganic anions, such as Cl− and HCO3−, enhanced the degradation efficiency of MB 9 under optimal conditions. Addition of HCO3− reduced the degradation performance of MB 9, whereas the addition of Cl− increased the degradation percentage of MB 9. In addition, quenching experiments were conducted using methanol and tert-butyl alcohol as scavengers, and methanol was identified as an effective scavenger. Thus, the degradation of MB 9 was attributed to S O 4 • − and •OH radicals. The degradation and mineralization efficiency of MB 9 was significantly reduced using the conventional Fenton process i.e., Fe2+/ hydrogen peroxide (HP) because of the formation of a Fe complex during degradation. Meanwhile, the Fe2+/persulfate (PS) system improved the degradation and mineralization performance.


2021 ◽  
pp. 116913
Author(s):  
Márcio José da Silva ◽  
Diego Morais Chaves ◽  
Sukarno Olavo ferreira ◽  
Rene Chagas da Silva ◽  
Jose Balena Gabriel Filho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document