scholarly journals Effects of Transition Element Additions on the Interfacial Interaction and Electronic Structure of Al(111)/6H-SiC(0001) Interface: A First-Principles Study

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 630
Author(s):  
Changqing Wang ◽  
Weiguang Chen ◽  
Jingpei Xie

In this work, the effects of 20 transition element additions on the interfacial adhesion energy and electronic structure of Al(111)/6H-SiC(0001) interfaces have been studied by the first-principles method. For pristine Al(111)/6H-SiC(0001) interfaces, both Si-terminated and C-terminated interfaces have covalent bond characteristics. The C-terminated interface has higher binding energy, which is mainly due to the stronger covalent bond formed by the larger charge transfer between C and Al. The results show that the introduction of many transition elements, such as 3d transitional group Mn, Fe, Co, Ni, Cu, Zn and 4d transitional group Tc, Ru, Rh, Pd, Ag, can improve the interfacial adhesion energy of the Si-terminated Al(111)/6H-SiC(0001) interface. However, for the C-terminated Al(111)/6H-SiC(0001) interface, only the addition of Co element can improve the interfacial adhesion energy. Bader charge analysis shows that the increase of interfacial binding energy is mainly attributed to more charge transfer.

Author(s):  
Changqing Wang ◽  
Weiguang Chen ◽  
Jingpei Xie

In this work, effects of 20 transition element additives on the interfacial adhesion energy and electronic structure of Al (111)/6H-SiC (0001) interfaces have been studied by first principles method. For clean Al (111)/6H–SiC (0001) interfaces, both Si-terminated and C-terminated interfaces have covalent bond characteristics. The C-terminated interface has stronger binding energy, which is mainly due to the stronger covalent bond formed by the larger charge transfer between C and Al. The results show that the introduction of many transition elements, such as 3d transitional group Mn, Fe, Co, Ni, Cu, Zn and 4d transitional group Tc, Ru, Rh, Pd, Ag, can improve the interfacial adhesion energy of the Si-terminated Al (111)/6H-SiC (0001) interface. However, for the C-terminated Al (111)/6H-SiC (0001) interface, only the addition of Co element can improve the interfacial adhesion energy. Bader charge analysis shows that the increase of interfacial binding energy is mainly attributed to more charge transfer.


2001 ◽  
Vol 695 ◽  
Author(s):  
G. Cui ◽  
M. Lane ◽  
K. Vijayamohanan ◽  
G. Ramanath

ABSTRACTAs the critical feature size in microelectronic devices continues to decrease below 100 nm, new barrier materials of > 5 nm thickness are required. Recently we have shown that self-assembled monolayers (SAMs) are attractive candidates that inhibit Cu diffusion into SiO2. For SAMs to be used as barriers in real applications, however, they must also promote adhesion at the Cu/dielectric interfaces. Here, we report preliminary quantitative measurements of interfacial adhesion energy and chemical binding energy of Cu/SiO2 interfaces treated with nitrogen-terminated SAMs. Amine-containing SAMs show a ~10% higher adhesion energy with Cu, while interfaces with Cu-pyridine bonds actually show degraded adhesion, when compared with that of the reference Cu/SiN interface. However, X-ray photoelectron spectroscopy (XPS) measurements show that Cu-pyridine and Cu-amine interactions have a factor-of-four higher binding energy than that of Cu-N bonds at Cu/SiN interfaces. The lack of correlation between adhesion and chemical binding energies is most likely due to incomplete coverage of SAMs.


2009 ◽  
Vol 29 (6) ◽  
pp. 662-669 ◽  
Author(s):  
Eun-Jung Jang ◽  
Young-Bae Park ◽  
Hak-Joo Lee ◽  
Dae-Geun Choi ◽  
Jun-Ho Jeong ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1573 ◽  
Author(s):  
Jin Yang ◽  
Can Weng ◽  
Jun Lai ◽  
Tao Ding ◽  
Hao Wang

In micro-injection molding, the interaction between the polymer and the mold insert has an important effect on demolding quality of nanostructure. An all-atom molecular dynamics simulation method was performed to study the effect of nanostructure shape, interfacial adhesion energy, and mold insert material on demolding quality of nanostructures. The deformation behaviors of nanostructures were analyzed by calculating the non-bonded interaction energies, the density distributions, the radii of gyration, the potential energies, and the snapshots of the demolding stage. The nanostructure shape had a direct impact on demolding quality. When the contact areas were the same, the nanostructure shape did not affect the non-bonded interaction energy at PP-Ni interface. During the demolding process, the radii of gyration of molecular chains were greatly increased, and the overall density was decreased significantly. After assuming that the mold insert surface was coated with an anti-stick coating, the surface burrs, the necking, and the stretching of nanostructures were significantly reduced after demolding. The deformation of nanostructures in the Ni and Cu mold inserts were more serious than that of the Al2O3 and Si mold inserts. In general, this study would provide theoretical guidance for the design of nanostructure shape and the selection of mold insert material.


2016 ◽  
Vol 9 ◽  
pp. 226-236 ◽  
Author(s):  
Yan Wang ◽  
Yujie Pu ◽  
Zengsheng Ma ◽  
Yong Pan ◽  
Chang Q. Sun

2012 ◽  
Vol 602-604 ◽  
pp. 870-873 ◽  
Author(s):  
Wei Zhao ◽  
Qing Yuan Meng

The adsorption of methane (CH4) molecule on the pristine and Al-doped (4, 8) graphene was investigated via the first-principles calculations. The results demonstrated that, in comparison to the adsorption of a CH4molecule on the pristine graphene sheet, a relatively stronger adsorption was observed between the CH4molecule and Al-doped graphene with a shorter adsorption distance, larger binding energy and more charge-transfer from the graphene surface to the CH4molecule. Therefore, the Al-doped graphene can be expected to be a novel sensor for the detection of CH4molecules in future applications.


2021 ◽  
Vol 116 ◽  
pp. 114020
Author(s):  
Cheol Kim ◽  
Kirak Son ◽  
Gahui Kim ◽  
Sungtae Kim ◽  
Sol-Kyu Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document