scholarly journals Non-Destructive Corrosion Inspection of Reinforced Concrete Using Ground-Penetrating Radar: A Review

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 975
Author(s):  
Ksenija Tešić ◽  
Ana Baričević ◽  
Marijana Serdar

Reduced maintenance costs of concrete structures can be ensured by efficient and comprehensive condition assessment. Ground-penetrating radar (GPR) has been widely used in the condition assessment of reinforced concrete structures and it provides completely non-destructive results in real-time. It is mainly used for locating reinforcement and determining concrete cover thickness. More recently, research has focused on the possibility of using GPR for reinforcement corrosion assessment. In this paper, an overview of the application of GPR in corrosion assessment of concrete is presented. A literature search and study selection methodology were used to identify the relevant studies. First, the laboratory studies are shown. After that, the studies for the application on real structures are presented. The results have shown that the laboratory studies have not fully illuminated the influence of the corrosion process on the GPR signal. Also, no clear relationship was reported between the results of the laboratory studies and the on-site inspection. Although the GPR has a long history in the condition assessment of structures, it needs more laboratory investigations to clarify the influence of the corrosion process on the GPR signal.

Author(s):  
Łukasz Drobiec ◽  
Radosław Jasiński ◽  
Wojciech Mazur

Currently, electromagnetic and radar methods are the most common non-destructive tests for non-destructive rebar location in structures.. Both methods have some advantages, disadvantages and limitations. This article is an attempt to describe possibilities of particular methods with emphasizing their advantages and limitations. The first stage of tests included results from tests conducted on a lintel beam made of autoclaved aerated concrete (AAC) and reinforced with small-diameter rebars and rebars placed close to each other. The second stage consisted in testing nine lightweight concrete specimens, each with three bars having a diameter of 10, 16 and 20 mm at three different space arrangements, to determine the effect of bar diameter and spacing on the measurement accuracy. The reinforcement of lintels and specimens was tested with two different electromagnetic scanners and a ground-penetrating radar (GPR) device. Received results from direct tests were compared with results from non-destructive tests (NDT). NDT tests conducted in such an element were found to perform the correct assessment of the concrete cover, and at the same time to give ambiguous results with reference to shape and number of rebars.


2021 ◽  
Vol 13 (10) ◽  
pp. 2020
Author(s):  
Ruiqing Shen ◽  
Yonghui Zhao ◽  
Shufan Hu ◽  
Bo Li ◽  
Wenda Bi

The evaluation and inspection of steel bars in reinforced concrete structures are critical for prolonging the service life of buildings. In this regard, ground-penetrating radar (GPR) has been a crucial alternative due to its non-invasiveness and convenience. This paper reports the experimental activities on a test-site area inside a camp in Shanghai, China. To assess the concrete structures of the building, GPR was employed for the detection and localization of rebars in columns, beams, and floors. From the GPR B-scan profiles acquired using a high-frequency antenna, the exact quantity of reinforcements was identified according to the hyperbola responses. Considering the difficulty of inferring the exact position and the scale of the rebars, we applied reverse time migration (RTM) to collapse the hyperbolic response and retrieve the target in a migrated image. To verify the effectiveness of the RTM algorithm, we carried out an experiment on a concrete model with three reinforced bars. We also utilized the RTM algorithm to process the B-scan profiles collected in a column that was later excavated. The imaging results validated the capacity of RTM in localizing and shaping rebars. Then, we employed the RTM algorithm for the GPR B-scan data collected from the other column. Based on the imaging profile, the quantity and positions of the rebars were correctly determined. Moreover, the thickness of the protective layer was evaluated according to the migrated result. These results demonstrate that GPR combined with RTM could provide useful foundation data for structural evaluation.


2013 ◽  
Vol 61 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Guofu Qiao ◽  
Yi Hong ◽  
Tiejun Liu ◽  
Jinping Ou

Purpose – The aim of this paper was to investigate the passive corrosion control and active corrosion protective effect of the reinforced concrete structures by electrochemical chloride removal (ECR) method and inhibitors approach, respectively. Design/methodology/approach – The concentration of aggressive chloride ion distributed from the reinforcing steel to the surface of the concrete cover was analyzed during the ECR processes. Besides, the half-cell potential, the concrete resistance R c , the polarization resistance R p and the capacitance of double layer C dl of the steel/concrete system were used to characterize the electrochemical performance of the concrete prisms. Findings – The effectiveness of ECR could be enhanced by increasing the amplitude of potential or prolonging the time. Inhibitor SBT-ZX(I) could successfully prevent the corrosion development of the reinforcing steel in concrete. Originality/value – The research provides the scientific basis for the practical application of ECR and inhibitors in the field.


2016 ◽  
Author(s):  
Isabel Rodríguez-Abad ◽  
Gilles Klysz ◽  
Rosa Martínez-Sala ◽  
Jean Paul Balayssac ◽  
Jesús Mené-Aparicio

Abstract. The long term performance of concrete structures is directly tied to two factors: concrete durability and strength. When assessing the durability of concrete structures, the study of the water penetration is paramount, because almost all reactions like corrosion, alkali-silica, sulfate, etc., which produce their deterioration, require the presence of water. Ground-penetrating radar (GPR) has shown to be very sensitive to water variations. On this basis, the objective of this experimental study is, firstly, to analyze the correlation between the water penetration depth in concrete samples and the GPR wave parameters. To do this, the samples were immersed into water for different time intervals and the wave parameters were obtained from signals registered when the antenna was placed on the immersed surface of the samples. Secondly, a procedure has been developed to be able to determine, from those signals, the reliability in the detection and location of waterfront depths. The results have revealed that GPR may have an enormous potential in this field, because excellent agreements were found between the correlated variables. In addition, when comparing the waterfront depths calculated from GPR measurements and those visually registered after breaking the samples, we observed that they totally agreed when the waterfront was more than 4 cm depth.


Sign in / Sign up

Export Citation Format

Share Document