scholarly journals Effect of a Multiple Reduction Die on the Residual Stress of Drawn Materials

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1358
Author(s):  
Jeong-Hun Kim ◽  
Chang-Hyun Baek ◽  
Sang-Kon Lee ◽  
Jong-Hun Kang ◽  
Joon-Hong Park ◽  
...  

Residual stress may influence the mechanical behavior and durability of drawn materials. Thus, this study develops a multiple reduction die (MRD) that can reduce residual stress during the drawing process. The MRD set consists of several die tips, die cases, and lubricating equipment. All the die tips of the MRD were disposed of simultaneously. Finite element analysis of the drawing process was performed according to the reduction ratio of each die tip, and the variables in drawing process with the MRD were optimized using a deep neural network to minimize the residual stress. Experiments on the drawing process with the conventional die and MRD were performed to evaluate the residual stress and verify the effectiveness of the MRD. The results of X-ray diffraction measurements indicated that the axial and hoop residual stresses on the surface were dramatically reduced.

2006 ◽  
Vol 524-525 ◽  
pp. 343-348 ◽  
Author(s):  
Alexander M. Korsunsky ◽  
Kyung Mok Kim ◽  
Gabriel M. Regino

Residual stresses in titanium alloy samples that were subjected to shot peening followed by fretting fatigue loading were investigated using a combined experimental and numerical analysis procedure based on the concept of eigenstrain. Fretting fatigue loading was carried out in the pad – on-flat geometry using the Oxford in-line fretting rig. Flat-and-rounded pad shape was used to introduce the contact tractions and internal stress fields typical of the target application in aeroengine design. The specimens were in the shape of bars of 10mm square cross-section shotpeened on all sides. Both the pads and specimens were made from the Ti-6Al-4V alloy. Small remote displacement characteristic of fretting fatigue conditions was applied in the experiments. The residual elastic strains in the middle of the pad-to-sample contact and near the rounded pad edge were measured using synchrotron X-ray diffraction on Station 16.3 at SRS Daresbury. A combination of finite element analysis and the distributed eigenstrain method was used in the simulations. Commercial finite element analysis software, ABAQUS ver 6.41, was used to build the finite element model and to introduce the residual stresses into the model using eigenstrain distributions via a user-defined subroutine. In an unfretted shot peened sample an excellent agreement of residual stress profiles was obtained between the experimental data and model prediction by the variational eigenstrain procedure. In a fretted sample the residual stress change due to fretting was observed, and predicted numerically. A good correlation was found between the FE simulation prediction and the experimental data measured at contact edges.


Author(s):  
Francis H. Ku ◽  
Pete C. Riccardella

This paper presents a fast finite element analysis (FEA) model to efficiently predict the residual stresses in a feeder elbow in a CANDU nuclear reactor coolant system throughout the various stages of the manufacturing and welding processes, including elbow forming, Grayloc hub weld, and weld overlay application. The finite element (FE) method employs optimized FEA procedure along with three-dimensional (3-D) elastic-plastic technology and large deformation capability to predict the residual stresses due to the feeder forming and various welding processes. The results demonstrate that the fast FEA method captures the residual stress trends with acceptable accuracy and, hence, provides an efficient and practical tool for performing complicated parametric 3-D weld residual stress studies.


Author(s):  
Shivdayal Patel ◽  
B. P. Patel ◽  
Suhail Ahmad

Welding is one of the most used joining methods in the ship industry. However, residual stresses are induced in the welded joints due to the rapid heating and cooling leading to inhomogenously distributed dimensional changes and non-uniform plastic and thermal strains. A number of factors, such as welding speed, boundary conditions, weld geometry, weld thickness, welding current/voltage, number of weld passes, pre-/post-heating etc, influence the residual stress distribution. The main aim of this work is to estimate the residual stresses in welded joints through finite element analysis and to investigate the effects of boundary conditions, welding speed and plate thickness on through the thickness/surface distributions of residual stresses. The welding process is simulated using 3D Finite element model in ABAQUS FE software in two steps: 1. Transient thermal analysis and 2. Quasi-static thermo-elasto-plastic analysis. The normal residual stresses along and across the weld in the weld tow region are found to be significant with nonlinear distribution. The residual stresses increase with the increase in the thickness of the plates being welded. The nature of the normal residual stress along the weld is found to be tensile-compressive-tensile and the nature of normal residual stress across the weld is found to be tensile along the thickness direction.


2008 ◽  
Vol 571-572 ◽  
pp. 277-282 ◽  
Author(s):  
Xu Song ◽  
Solène Chardonnet ◽  
Giancarlo Savini ◽  
Shu Yan Zhang ◽  
Willem J.J. Vorster ◽  
...  

The aim of the study presented here was to evaluate the residual stresses present in a bar of aluminium alloy 2124-T1 matrix composite (MMC) reinforced with 25vol% particulate silicon carbide (SiCp) using X-ray diffraction and 3D profilometry (curvature measurement using Mitutoyo/Renishaw coordinate measurement machine) and comparing these results with numerical models of residual strain and stress profiles obtained by a simple inelastic bending model and Finite Element Analysis (FEA). The residual strain distribution was introduced into the test piece by plastic deformation in the 4-point bending configuration. At the first stage of this study the elasticplastic behaviour of the MMC was characterized under static and cyclic loading to obtain the material parameters, hardening proprieties and cyclic hysteresis loops. Subsequently, synchrotron Xray diffraction and CMM curvature measurements were performed to deduce the residual stress profile in the central section of the bar. The experimental data obtained from these measurements were used in the inelastic bending and FEA simulations. The specimens were then subjected to incremental slitting using EDM (electric discharge machining) with continuous back and front face strain gauge monitoring. The X-ray diffraction and incremental slitting results were then analysed using direct and inverse eigenstrain methods. Residual stresses plots obtained by different methods show good agreement with each other.


Sign in / Sign up

Export Citation Format

Share Document