scholarly journals A State-of-the-Art Review on Advanced Joining Processes for Metal-Composite and Metal-Polymer Hybrid Structures

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1890
Author(s):  
Francesco Lambiase ◽  
Silvia Ilaria Scipioni ◽  
Chan-Joo Lee ◽  
Dae-Cheol Ko ◽  
Fengchao Liu

Multi-materials of metal-polymer and metal-composite hybrid structures (MMHSs) are highly demanded in several fields including land, air and sea transportation, infrastructure construction, and healthcare. The adoption of MMHSs in transportation industries represents a pivotal opportunity to reduce the product’s weight without compromising structural performance. This enables a dramatic reduction in fuel consumption for vehicles driven by internal combustion engines as well as an increase in fuel efficiency for electric vehicles. The main challenge for manufacturing MMHSs lies in the lack of robust joining solutions. Conventional joining processes, e.g., mechanical fastening and adhesive bonding involve several issues. Several emerging technologies have been developed for MMHSs’ manufacturing. Different from recently published review articles where the focus is only on specific categories of joining processes, this review is aimed at providing a broader and systematic view of the emerging opportunities for hybrid thin-walled structure manufacturing. The present review paper discusses the main limitations of conventional joining processes and describes the joining mechanisms, the main differences, advantages, and limitations of new joining processes. Three reference clusters were identified: fast mechanical joining processes, thermomechanical interlocking processes, and thermomechanical joining processes. This new classification is aimed at providing a compass to better orient within the broad horizon of new joining processes for MMHSs with an outlook for future trends.

2021 ◽  
pp. 146808742110129
Author(s):  
Hidemi Ogihara ◽  
Takumi Iwata ◽  
Yuji Mihara ◽  
Makoto Kano

Internal combustion engines have been improved markedly in recent years through efforts to conserve resources, reduce emissions and improve fuel efficiency. In this regard, the authors have been working to reduce friction and improve the seizure properties of the crankshaft main journal and main bearing. These mechanical components of internal combustion engines incur large friction losses. In order to reduce friction, journals have been coated with a diamond-like carbon (DLC) coating, which has been reported to reduce friction in the fluid lubrication regime in recent years. Another current issue of journals and bearings is the need to improve seizure resistance. Therefore, these properties were evaluated for material combinations of aluminium alloy bearings and DLC-coated journals, which have low affinity. The results revealed that friction was reduced under a fluid lubrication regime and seizure resistance was improved under a mixed lubrication regime.


Author(s):  
João PM Pragana ◽  
Tomás RM Contreiras ◽  
Ivo MF Bragança ◽  
Carlos MA Silva ◽  
Luis M Alves ◽  
...  

This article presents new joining-by-forming processes to assemble longitudinally two metal–polymer sandwich composite panels perpendicular to one another. Process design draws from an earlier development of the authors for metal sheets to new concepts based on the combination of sheet-bulk forming with mortise-and-tenon joints. Selected examples obtained from experimentation and finite element modelling give support to the presentation. A new three-stage joining by the forming process is capable of producing mechanically locked joints with larger and stiffer flat-shaped heads than those fabricated by alternative single- or two-stage solutions. Failure in the new three-stage joining by the forming process is found to take place by cracking instead of disassembling after unbending the flat-shaped head of the joint back to its original shape. The required forming forces to produce the new metal–polymer joints are below 15 kN, allowing them to be an effective, easy-to-implement alternative to existing solutions based on adhesive bonding, welding and mechanical fastening.


2018 ◽  
Vol 217 ◽  
pp. 211-214 ◽  
Author(s):  
R. Falck ◽  
S.M. Goushegir ◽  
J.F. dos Santos ◽  
S.T. Amancio-Filho

Author(s):  
Andrew Ahn ◽  
Thomas S. Welles ◽  
Benjamin Akih-Kumgeh

Abstract Byproducts of fossil fuel combustion contribute to negative changes in the global climate. Specifically, emissions from automobiles are a major source of greenhouse gas pollution. Efforts to minimize these harmful emissions have led to the development and sustained improvement of hybrid drivetrains in automobiles. Despite many advancements, however, hybrid systems still face substantial challenges which bear on their practicality, performance, and competitive disadvantage in view of the low cost of today’s traditional internal combustion engines. These imperfections notwithstanding, hybrid electric vehicles have the potential to play significant roles in the future as cleaner transportation solutions. Actualization of this potential will depend on the ability of hybrid-electric vehicles to minimize their disadvantages while increasing their positive features relative to traditional combustion engines. This research investigates current hybrid electric architectures in automobiles with the aim of suggesting an alternative, more efficient hybrid configuration that utilizes current technology. This is completed by utilizing an iterative design process to compare how various components of existing hybrids can be combined and/or improved to develop a single, efficient and cohesive system that performs comparably to or surpasses existing ones in fuel efficiency and low emissions in all driving conditions. A critical and comparative analysis is provided based on current hybrid-electric vehicle architectures as well as a plausible alternative.


Author(s):  
S. Sivrikova ◽  
J. Rojdestvensky ◽  
I. Petrov ◽  
S. Popova

Quality, reliability and fuel efficiency of internal combustion engines (ICE) substantially depend upon optimum choice of lubrication system and tribocontact design and a lubricant liquid. This paper describes a quasistatic method of analysis of ICE lubrication systems for Newtonian and non-Newtonian oils. The method allows for both transient and steady-state conditions.


2018 ◽  
Vol 159 ◽  
pp. 02017
Author(s):  
Zhouyong Hou ◽  
Tomomi Honda

For improving automobile fuel efficiency, the internal combustion engines must be required to reduce the friction and wear. Changing viscosity of lubricant and surface pressure could succeed, but the seizure is easy to happen in engines. However, the surface texture can solve those problems. The running-in behavior affects friction and wear on whole combustion engines. If the running-in is not carefully designed, catastrophic accident can happen. This experiment investigates that the running-in behavior is influenced by textured surfaces and the tested materials are the cast iron and the different area ratio of dimple of aluminum alloy combination. The friction coefficient and the number and size of wear particles are measured by the friction sensor and particle counter. After the tests, the worn surfaces are measured through using surface profile measurement systems, and some significant phenomena are observed and analyzed. The textured surface verifies good consequence and tribological advantages.


2019 ◽  
Vol 45 ◽  
pp. 217-226 ◽  
Author(s):  
A. Ozlati ◽  
M. Movahedi ◽  
M. Tamizi ◽  
Z. Tartifzadeh ◽  
S. Alipour

Author(s):  
V.A. Markov

The paper emphasizes the relevance of research aimed at further improving the systems of automatic control and regulation of heat and power plants, mainly plants with reciprocating internal combustion engines. The study assessed the current level of the development of these systems, and analyzed the prospects of their use as mobile and stationary heat and power plants. These plants are widely used in various sectors of the economy --- energy, transport, agriculture, so it appears important to describe the main directions of further improvement of these plants and their automatic control and regulation systems. The purpose of the research was to further increase the power indicators of heat and power plants, improve their fuel efficiency and exhaust gas toxicity, and enhance the dynamic qualities of internal combustion engines. In our study, we also examined the main directions of improving the fuel supply and air supply systems of engines, their work process, adaptation of engines to work on various alternative types of fuel. Findings of research show that it is necessary to expand the functional capabilities of control and regulation systems, implement integrated adaptive control of a heat and power plant and its systems, use electronic microprocessor devices in the structure of regulators, enhance the multi-parameter efficiency of the operation of a heat and power plant and its elements, taking into account the whole set of parameters of this plant The paper was based on the materials of the reports of the all-Russian scientific and technical conference n.a. Professor V.I. Krutov (29.01.2020)


Sign in / Sign up

Export Citation Format

Share Document