scholarly journals Selective Extraction of Nonfullerene Acceptors from Bulk-Heterojunction Layer in Organic Solar Cells for Detailed Analysis of Microstructure

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2107
Author(s):  
Masahiro Nakano ◽  
Akira Takahara ◽  
Kenji Genda ◽  
Md. Shahiduzzaman ◽  
Makoto Karakawa ◽  
...  

Detailed analyses of the microstructures of bulk-heterojunction (BHJ) layers are important for the development of high-performance photovoltaic organic solar cells (OSCs). However, analytical methods for BHJ layer microstructures are limited because BHJ films are composed of a complex mixture of donor and acceptor materials. In our previous study on the microstructure of a BHJ film composed of donor polymers and fullerene-based acceptors, we analyzed donor polymer-only films after selectively extracting fullerene-based acceptors from the film by atomic force microscopy (AFM). Not only was AFM suitable for a clear analysis of the morphology of the donor polymers in the BHJ film, but it also allowed us to approximate the acceptor morphology by analyzing the pores in the extracted films. Herein we report a method for the selective extraction of nonfullerene acceptors (NFAs) from a BHJ layer in OSCs and provide a detailed analysis of the remaining BHJ films based upon AFM. We found that butyl glycidyl ether is an effective solvent to extract NFAs from BHJ films without damaging the donor polymer films. By using the selective extraction method, the morphologies of NFA-free BHJ films fabricated under various conditions were studied in detail. The results may be useful for the optimization of BHJ film structures composed of NFAs and donor polymers.

2018 ◽  
Vol 6 (30) ◽  
pp. 14675-14680 ◽  
Author(s):  
Xuan Zhou ◽  
Wei Tang ◽  
Pengqing Bi ◽  
Lei Yan ◽  
Xingzhu Wang ◽  
...  

Supramolecular self-assembly of a porphyrin donor with J-aggregates affords higher performance with a PC71BM acceptor in bulk heterojunction organic solar cells.


2016 ◽  
Vol 8 (10) ◽  
pp. 6309-6314 ◽  
Author(s):  
Jurgen Kesters ◽  
Sanne Govaerts ◽  
Geert Pirotte ◽  
Jeroen Drijkoningen ◽  
Michèle Chevrier ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ruimin Zhou ◽  
Zhaoyan Jiang ◽  
Chen Yang ◽  
Jianwei Yu ◽  
Jirui Feng ◽  
...  

AbstractThe high efficiency all-small-molecule organic solar cells (OSCs) normally require optimized morphology in their bulk heterojunction active layers. Herein, a small-molecule donor is designed and synthesized, and single-crystal structural analyses reveal its explicit molecular planarity and compact intermolecular packing. A promising narrow bandgap small-molecule with absorption edge of more than 930 nm along with our home-designed small molecule is selected as electron acceptors. To the best of our knowledge, the binary all-small-molecule OSCs achieve the highest efficiency of 14.34% by optimizing their hierarchical morphologies, in which the donor or acceptor rich domains with size up to ca. 70 nm, and the donor crystals of tens of nanometers, together with the donor-acceptor blending, are proved coexisting in the hierarchical large domain. All-small-molecule photovoltaic system shows its promising for high performance OSCs, and our study is likely to lead to insights in relations between bulk heterojunction structure and photovoltaic performance.


2013 ◽  
Vol 4 ◽  
pp. 680-689 ◽  
Author(s):  
Gisela L Schulz ◽  
Marta Urdanpilleta ◽  
Roland Fitzner ◽  
Eduard Brier ◽  
Elena Mena-Osteritz ◽  
...  

The optimization of solution-processed organic bulk-heterojunction solar cells with the acceptor-substituted quinquethiophene DCV5T-Bu 4 as donor in conjunction with PC61BM as acceptor is described. Power conversion efficiencies up to 3.0% and external quantum efficiencies up to 40% were obtained through the use of 1-chloronaphthalene as solvent additive in the fabrication of the photovoltaic devices. Furthermore, atomic force microscopy investigations of the photoactive layer gave insight into the distribution of donor and acceptor within the blend. The unique combination of solubility and thermal stability of DCV5T-Bu 4 also allows for fabrication of organic solar cells by vacuum deposition. Thus, we were able to perform a rare comparison of the device characteristics of the solution-processed DCV5T-Bu 4 :PC61BM solar cell with its vacuum-processed DCV5T-Bu 4 :C60 counterpart. Interestingly in this case, the efficiencies of the small-molecule organic solar cells prepared by using solution techniques are approaching those fabricated by using vacuum technology. This result is significant as vacuum-processed devices typically display much better performances in photovoltaic cells.


2019 ◽  
Vol 31 (48) ◽  
pp. 1903868 ◽  
Author(s):  
Akchheta Karki ◽  
Joachim Vollbrecht ◽  
Alana L. Dixon ◽  
Nora Schopp ◽  
Max Schrock ◽  
...  

2021 ◽  
Author(s):  
Ya-Rong Lee ◽  
Cheng-Chia Huang ◽  
Wen-Yu Huang ◽  
Chin-Ti Chen ◽  
Ping-Tsung Huang ◽  
...  

Abstract Bulk heterojunction is one key concept leading to breakthrough in organic photovoltaics. The active layer is expectantly formed of distinct morphologies that carry out their respective roles in photovoltaic performance. The morphology-performance relationship however remains stymied, because unequivocal morphology at the nanoscale is not available. We used scattering-type scanning near-field optical microscopy operating with a visible light source (visible s-SNOM) to disclose the nanomorphology of P3HT:PCBM and pBCN:PCBM blends. Donor and acceptor domain as well as intermixed phase were identified and their intertwined distributions were mapped. We proposed energy landscapes of the BHJ active layer to shed light on the roles played by these morphologies in charge separation, transport and recombination. This study shows that visible s-SNOM is capable of profiling the morphological backdrop pertaining to the operation of high performance organic solar cells.


Sign in / Sign up

Export Citation Format

Share Document