scholarly journals Transforming Pt-SnO2 Nanoparticles into Pt-SnO2 Composite Nanoceramics for Room-Temperature Hydrogen-Sensing Applications

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2123
Author(s):  
Ming Liu ◽  
Caochuang Wang ◽  
Pengcheng Li ◽  
Liang Cheng ◽  
Yongming Hu ◽  
...  

Many low-dimensional nanostructured metal oxides (MOXs) with impressive room-temperature gas-sensing characteristics have been synthesized, yet transforming them into relatively robust bulk materials has been quite neglected. Pt-decorated SnO2 nanoparticles with 0.25–2.5 wt% Pt were prepared, and highly attractive room-temperature hydrogen-sensing characteristics were observed for them all through pressing them into pellets. Some pressed pellets were further sintered over a wide temperature range of 600–1200 °C. Though the room-temperature hydrogen-sensing characteristics were greatly degraded in many samples after sintering, those samples with 0.25 wt% Pt and sintered at 800 °C exhibited impressive room-temperature hydrogen-sensing characteristics comparable to those of their counterparts of as-pressed pellets. The variation of room-temperature hydrogen-sensing characteristics among the samples was explained by the facts that the connectivity between SnO2 grains increases with increasing sintering temperature, and Pt promotes oxidation of SnO2 at high temperatures. These results clearly demonstrate that some low-dimensional MOX nanocrystals can be successfully transformed into bulk MOXs with improved robustness and comparable room-temperature gas-sensing characteristics.

2021 ◽  
Vol 21 (9) ◽  
pp. 4865-4869
Author(s):  
Mei Long ◽  
Huan Yuan ◽  
Ping Sun ◽  
Lei Su ◽  
Xiangping Jiang

Noble metal-metal oxide nanohybrids play a significant contribution in gas sensing applications at room temperature. Here, Ag-loaded ZnO with different Ag doping concentration are prepared by two-step polymer-network gel method, and NO2 sensing characteristics are tested at room temperature with various concentrations. The nanocrystal sizes are found to be more uniform with increasing with Ag concentration, and photoluminescence spectroscopy further reveals the different defects in ZnO–Ag nanocrystal lattices: pure ZnO has the largest intensity of the conduction band to valence band combination, and ZnO–Ag-1 (1 mol% Ag doping concentration) has the largest oxygen vacancy content, while ZnO–Ag-3 (3 mol% Ag doping concentration) has the largest excess zinc interstitial. It is showed that the gas sensing properties are independent of the size of nanocrystals, and more dependent on the nanocrystal defect structure. In this work, a new sensing mechanism is proposed according to the experimental results.


2005 ◽  
Vol 109 (1) ◽  
pp. 57-63 ◽  
Author(s):  
E. Rossinyol ◽  
J. Arbiol ◽  
F. Peiró ◽  
A. Cornet ◽  
J.R. Morante ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (29) ◽  
pp. 17217-17227 ◽  
Author(s):  
Pritamkumar V. Shinde ◽  
Nanasaheb M. Shinde ◽  
Shoyebmohamad F. Shaikh ◽  
Damin Lee ◽  
Je Moon Yun ◽  
...  

Room-temperature (27 °C) synthesis and carbon dioxide (CO2)-gas-sensing applications of bismuth oxide (Bi2O3) nanosensors obtained via a direct and superfast chemical-bath-deposition method (CBD) with different surface areas and structures.


2013 ◽  
Vol 684 ◽  
pp. 21-25 ◽  
Author(s):  
Tse Pu Chen ◽  
Sheng Po Chang ◽  
Shoou Jinn Chang

Two-dimensional ZnO nanowalls were rapidly grown on glass substrate by thermal evaporation at low temperature without any catalysts or the pre-deposition of a ZnO seed layer on the substrate. Most of the ZnO nanowalls grown at 450°C were vertical on substrate and they were about 70-200 nm thick and 2 µm long. The room-temperature photoluminescence (PL) spectra showed a strong intrinsic ultraviolet (UV) emission and a weak defect-related emission. Hydrogen-sensing characteristics of the ZnO nanowalls have been investigated, and that make them become attractive candidates for gas sensor.


Sign in / Sign up

Export Citation Format

Share Document