scholarly journals Cutting Forces in Peripheral Up-Milling of Particleboard

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2208
Author(s):  
Bartosz Pałubicki

An analysis of forces acting in the peripheral up-milling of particleboard is presented. First, a novel method of high-frequency piezoelectric force signal treatment is proposed and used to separate the original force signal from the vibrations of the previous cutting iteration. This allows for the analysis of single chip cutting force courses during industrial CNC (Computer Numerical Control) milling. The acting forces are compared with the theoretical, instantaneous, uncut chip thickness. The results show that, for a range of 40–60 m/s, the higher the cutting speed used, the higher the resultant and principal cutting forces. The method of cutting thrust force used was similar to that observed in solid wood milling, i.e., first using a pushing action, followed by a pulling action. The obtained average specific principal cutting forces for particleboard peripheral up-milling are equal to 32.0 N/mm2 for slow and 37.6 N/mm2 for fast milling. The specific cutting thrust force decreases with the increase in instantaneous uncut chip thickness.

Author(s):  
Alper Uysal ◽  
Erhan Altan

In this study, the slip-line field model developed for orthogonal machining with a worn cutting tool was experimentally investigated. Minimum and maximum values of five slip-line angles ( θ1, θ2, δ2, η and ψ) were calculated. The friction forces that were caused by flank wear land, chip up-curl radii and chip thicknesses were calculated by solving the model. It was specified that the friction force increased with increase in flank wear rate and uncut chip thickness and it decreased a little with increase in cutting speed and rake angle. The chip up-curl radius increased with increase in flank wear rate and it decreased with increase in uncut chip thickness. The chip thickness increased with increase in flank wear rate and uncut chip thickness. Besides, the chip thickness increased with increase in rake angle and it decreased with increase in cutting speed.


2011 ◽  
Vol 697-698 ◽  
pp. 75-79 ◽  
Author(s):  
Y. Yang ◽  
Min Wan ◽  
Wei Hong Zhang ◽  
Y. Li

Analysis of instantaneous uncut chip thickness (IUCT) in peripheral milling of curved surface with variable curvature is nontrivial due to the combined influences of both process geometry and cutter runout. This paper gives a systematic analysis of IUCT including the effects of changing workpiece geometry and the cutter runout in peripheral milling. The prominent feature of this analysis procedure lies in that the novel equation for computing the IUCT is mathematically derived in detail. Numerical simulations are performed to study the effect of workpiece curvature and cutter runout on IUCT. The proposed model is validated by comparing the measured cutting forces with those predicted based on the IUCT which is obtained using the current approach.


Author(s):  
S.P. Sundar Singh Sivam ◽  
V.G. Umasekar ◽  
Ganesh Babu Loganathan ◽  
D Kumaran ◽  
K. Saravanan

This study presents the optimization of machining parameters on ZE41 Mg alloy fabricated by gravity die casting and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Focus on the optimization of machining parameters using the technique to get minimum surface roughness, cutting force, thermal stress, residual stress, chip thickness and maximum MRR. A number of machining experiments were conducted based on the L27 orthogonal array on computer numerical control vertical machining center. The experiments were performed on ZE41 using cutting tool of an ISO 460. 1-1140-034A0-XM GC3 of 20, 25 and 30mm diameter with cutting point 140 degrees, for different cutting conditions. TOPSIS and ANOVA were used to work out the fore most important parameters cutting speed, feed rate, depth of cut and tool diameter which affect the response. The expected values and measured values are fairly close. Finally, the study for optimizing machining process is surveyed and results show improvement in real experiments.


2011 ◽  
Vol 4 (4) ◽  
pp. 1387-1393 ◽  
Author(s):  
Zhenyu Han ◽  
Xiang Zhang ◽  
Yazhou Sun ◽  
Hongya Fu ◽  
Yingchun Liang

Author(s):  
Bo Xue ◽  
Yongda Yan ◽  
Gaojie Ma ◽  
Zhenjiang Hu

This paper proposed a machining method for micro V-shaped grooves, which was achieved by introducing the revolving trajectory on the basis of tip scratching process. By coordinating the revolving direction and the tip orientation, four kinds of revolving scratches were developed which had the revolving radii larger than the groove depths. It was found that there were two revolving scratches among these four being able to eliminate the side burrs and produce much smaller cutting forces during machining grooves compared to the traditional scratch, respectively named as the up-milling of face-forward and the down-milling of edge-forward. By considering the tip geometry in the traditional scratching process, the burr formation has been studied which was mainly affected by the effect of chip interference and the amount of uncut chip thickness. By analyzing the machining trajectory, the undeformed chip, the machined surface and the chip morphology, the reason why the up-milling of face-forward and the down-milling of edge-forward had good performances for machining V-grooves was elucidated in detail. Meanwhile, the differences between these two revolving scratches were discussed, and their advantages and disadvantages were also given.


2013 ◽  
Vol 641-642 ◽  
pp. 367-370
Author(s):  
Gui Qiang Liang ◽  
Fei Fei Zhao

Abstract In the present study, an attempt has been made to investigate the effect of cutting parameters (cutting speed, feed rate and depth of cut) on cutting forces (feed force, thrust force and cutting force) and surface roughness in milling of Quartz glas using diamond wheel. The cutting process in the up-cut milling of glass is discussed and the cutting force measured. The cutting force gradually increases with the cutter rotation at the beginning of the cut, and oscillates about a constant mean value after a certain undeformed chip thickness. The results show that cutting forces and surface roughness do not vary much with experimental cutting speed in the range of 55–93 m/min. The suggested models of cutting forces and surface roughness and adequately map within the limits of the cutting parameters considered.


2008 ◽  
Vol 375-376 ◽  
pp. 470-473 ◽  
Author(s):  
Dong Lu ◽  
Jian Feng Li ◽  
Yi Ming Rong ◽  
Jie Sun ◽  
Jun Zhou ◽  
...  

A burr formation process in micro-cutting of Al7075-T7451 was analyzed. Three stages of burr formation including steady-state cutting stage, pivoting stage, and burr formation stage are investigated. And the effects of uncut chip thickness, cutting speed and tool edge radius on the burr formation are studied. The simulation results show that the generation of negative shear zone is one of the prime reasons for burr formation. Uncut chip thickness has a significant effect on burr height; however, the cutting speed effect is minor. Unlike in conventional cutting, in micro-cutting the effect of tool edge radius on the burr geometry can no longer be neglected.


Sign in / Sign up

Export Citation Format

Share Document