A Study of Exit-Burr Formation Mechanism Using the Finite Element Method in Micro-Cutting of Aluminum Alloy

2008 ◽  
Vol 375-376 ◽  
pp. 470-473 ◽  
Author(s):  
Dong Lu ◽  
Jian Feng Li ◽  
Yi Ming Rong ◽  
Jie Sun ◽  
Jun Zhou ◽  
...  

A burr formation process in micro-cutting of Al7075-T7451 was analyzed. Three stages of burr formation including steady-state cutting stage, pivoting stage, and burr formation stage are investigated. And the effects of uncut chip thickness, cutting speed and tool edge radius on the burr formation are studied. The simulation results show that the generation of negative shear zone is one of the prime reasons for burr formation. Uncut chip thickness has a significant effect on burr height; however, the cutting speed effect is minor. Unlike in conventional cutting, in micro-cutting the effect of tool edge radius on the burr geometry can no longer be neglected.

2005 ◽  
Vol 128 (2) ◽  
pp. 474-481 ◽  
Author(s):  
X. Liu ◽  
R. E. DeVor ◽  
S. G. Kapoor

In micromachining, the uncut chip thickness is comparable or even less than the tool edge radius and as a result a chip will not be generated if the uncut chip thickness is less than a critical value, viz., the minimum chip thickness. The minimum chip thickness effect significantly affects machining process performance in terms of cutting forces, tool wear, surface integrity, process stability, etc. In this paper, an analytical model has been developed to predict the minimum chip thickness values, which are critical for the process model development and process planning and optimization. The model accounts for the effects of thermal softening and strain hardening on the minimum chip thickness. The influence of cutting velocity and tool edge radius on the minimum chip thickness has been taken into account. The model has been experimentally validated with 1040 steel and Al6082-T6 over a range of cutting velocities and tool edge radii. The developed model has then been applied to investigate the effects of cutting velocity and edge radius on the normalized minimum chip thickness for various carbon steels with different carbon contents and Al6082-T6.


2009 ◽  
Vol 69-70 ◽  
pp. 408-412 ◽  
Author(s):  
Zhen Yu Shi ◽  
Zhan Qiang Liu

In micromachining, the uncut chip thickness is comparable to the tool edge radius, and chip won’t be generated if the uncut chip thickness is less than a critical value, besides that, the minimum uncut chip thickness affect many factors such as the cutting force, the chip’s modality, the cutting surface quality, etc. In this paper, a geometric model is developed to predict the minimum uncut chip thickness values. The model accounts for the theory that the critical condition of producing chip is when the friction of the surface deformation asperities is zero. Two situations when the minimum value is larger or smaller than the tool edge radius respectively to predict the minimum value are discussed. The influences of tool edge radius and material’s property on the minimum uncut chip thickness are taken into account.


2012 ◽  
Vol 426 ◽  
pp. 235-238 ◽  
Author(s):  
Da Peng Dong ◽  
Xiao Hu Zheng ◽  
Ming Chen ◽  
Qing Long An

In recent years, with the development of machinery industry, micro-cutting technologies have been gradually moving into engineering realization. The paper carries out a series of works on simulation modeling of micro-cutting of Ti-5Al-5V-5Mo-3Cr considering tool edge radius. Unlike conventional cutting, in micro-cutting the effect of tool edge radius which has a marked impact on cutting force, specific cutting energy, burr formation and burr size can no longer be neglected.


2009 ◽  
Vol 76-78 ◽  
pp. 508-513 ◽  
Author(s):  
Mitsuyoshi Nomura ◽  
Takahiro Kawashima ◽  
Takayuki Shibata ◽  
Yoshihiko Murakami ◽  
Masami Masuda ◽  
...  

In micro endmilling, because of small uncut chip thickness comparable to the tool edge radius and low rigidity of tool, the cutting process must frequently transit between rubbing/ploughing and cutting, and it may deteriorate the machining stability, surface finish and tool wear. In this report, such unique cutting phenomena are investigated by modeling a mechanism, computer simulations and experiments. As a result, a possibility of the unique cutting phenomena proposed has been certified.


2014 ◽  
Vol 651-653 ◽  
pp. 764-767
Author(s):  
Tao Zhang ◽  
Hou Jun Qi ◽  
Gen Li

Micro cutting is a promising manufacturing method to obtain good surface integrity. Surface roughness shows size effect when the uncut chip thickness is smaller than the cutting edge radius. A special micro slot on the flank face of cutting tools was manufactured with discharge. Two groups of micro orthogonal cutting were conducted. The surface roughness of machined surface was measured and compared to each other. The results show that surface roughness decreases first and then increases with the ratio of uncut chip thickness to cutting edge radius. The surface machined with micro slot is better than that of without micro slot due to the micro slot restrain the back side flow of work piece based on the finite element model.


2013 ◽  
Vol 662 ◽  
pp. 99-102 ◽  
Author(s):  
Li Qiu Shi ◽  
Xiao Wen Li ◽  
Feng Yu

Monocrystalline silicon is typical of hard brittle materials, a high surface quality can be obtained in ductile-regime cutting. The success of the turning process depends on optimizing the machining parameters such as the tool edge radius, tool rake angles, depth of cut and cutting speed, etc. In this study, based on the ductile–brittle transition mechanism, the optimization of cutting parameters were determined with the commercial, general purpose FEA software Msc.Marc. The result demonstrates that the value of temperature is minimum when the tool rake angle is in the range of -15º~-30º. Smaller tool edge radius was selected while maintaining quality of tool edge radius and tool life. As long as beyond the range of cutting speed 6 ~ 8 mm/s, smaller residual stress can be obtain.


2008 ◽  
Vol 375-376 ◽  
pp. 31-35
Author(s):  
Jun Zhou ◽  
Jian Feng Li ◽  
Jie Sun ◽  
Zhi Ping Xu

In machining, the size effect is typically characterized by a non-linear increase in the specific cutting energy (or specific cutting force) as the uncut chip thickness is decreased. A finite element model of orthogonal micro-cutting was established to study the influence of tool edge radius on size effect when cutting 7050-T7451 aluminum alloy. Diamond cutting tool was used in the simulation. Specific cutting force and specific cutting energy are obtained through the simulation. The nonlinear scaling phenomenon is evident. The likely explanations for the size effect in small uncut chip thickness were discussed in this paper.


1974 ◽  
Vol 96 (4) ◽  
pp. 1258-1267 ◽  
Author(s):  
M. Es. Abdelmoneim ◽  
R. F. Scrutton

The results of cutting force measurements when machining materials which do not form a sizable unstable built-up-edge are compared with the results of a theoretical analysis. This analysis, based partly on the use of circular cylindrical surfaces of velocity discontinuity around the base of the tool, yields specific energy values which are uniquely determined by the value of the undeformed chip thickness in relation to the tool edge radius.


Sign in / Sign up

Export Citation Format

Share Document