scholarly journals Magnetic Anisotropy and Damping Constant of Ferrimagnetic GdCo Alloy near Compensation Point

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2604
Author(s):  
Sungjung Joo ◽  
Rekikua Sahilu Alemayehu ◽  
Jong-Guk Choi ◽  
Byong-Guk Park ◽  
Gyung-Min Choi

Metallic ferrimagnets with rare earth-transition metal alloys can provide novel properties that cannot be obtained using conventional ferromagnets. Recently, the compensation point of ferrimagnets, where the net magnetization or net angular momentum vanishes, has been considered a key aspect for memory device applications. For such applications, the magnetic anisotropy energy and damping constant are crucial. In this study, we investigate the magnetic anisotropy and damping constant of a GdCo alloy, with a Gd concentration of 12–27%. By analyzing the equilibrium tilting of magnetization as a function of the applied magnetic field, we estimate the uniaxial anisotropy to be 1–3 × 104 J m−3. By analyzing the transient dynamics of magnetization as a function of time, we estimate the damping constant to be 0.08–0.22.

2019 ◽  
Vol 100 (6) ◽  
Author(s):  
M. D. Davydova ◽  
K. A. Zvezdin ◽  
J. Becker ◽  
A. V. Kimel ◽  
A. K. Zvezdin

Author(s):  
А.И. Дмитриев ◽  
М.С. Дмитриева ◽  
Г.Г. Зиборов

AbstractThe temperature dependences of magnetization M ( T ) of thin ion-implanted Ge:Mn (4 at % Mn) films containing Ge_3Mn_5 clusters were measured on samples cooled in the absence of magnetic field (zero field cooled, ZFC) and in a magnetic field of 10 kOe (field-cooled, FC). It has been established that the shape of ZFC–FC differential M ( T ) curves is determined by lognormal distribution of the size-dependent magnetic anisotropy energy of Ge_3Mn_5 clusters. Analysis of the observed ZFC–FC magnetization curves allowed the magnetic anisotropy dispersion (variance) and magnetic anisotropy constant to be estimated.


2010 ◽  
Vol 160-162 ◽  
pp. 951-956
Author(s):  
Xu Yang ◽  
Lu Qian Gong ◽  
Liang Qiao ◽  
Tao Wang ◽  
Fa Shen Li

Fe-Co soft magnetic films with tuneable in-plane uniaxial anisotropy were successfully electrodeposited onto ITO conductive glass. The influence of composition and electrolyte temperature on in-plane magnetic anisotropy field was investigated. Our results show that the in-plane uniaxial anisotropy can be induced by a magnetic field applied in the film plane during electrodeposition. Fe-Co films with various Fe content in the range from 35 at.% to 53 at.% were obtained and the magnetic anisotropy field was very sensitive to the composition. Moreover, the influence of electrolyte temperature on magnetic anisotropy field was investigated and it was found that the in-plane uniaxial anisotropy field can be tuned by varying the electrolyte temperature from 5 to 40 oC.


1993 ◽  
Vol 90 ◽  
pp. 249-254 ◽  
Author(s):  
C Wolverton ◽  
M Asta ◽  
S Ouannasser ◽  
H Dreyssé ◽  
D de Fontaine

2002 ◽  
Vol 7 (2) ◽  
pp. 45-52
Author(s):  
L. Jakučionis ◽  
V. Kleiza

Electrical properties of conductive thin films, that are produced by vacuum evaporation on the dielectric substrates, and which properties depend on their thickness, usually are anisotropic i.e. they have uniaxial anisotropy. If the condensate grow on dielectric substrates on which plane electrical field E is created the transverse voltage U⊥ appears on the boundary of the film in the direction perpendicular to E. Transverse voltage U⊥ depends on the angle γ between the applied magnetic field H and axis of light magnetisation. When electric field E is applied to continuous or grid layers, U⊥ and resistance R of layers are changed by changing γ. It means that value of U⊥ is the measure of anisotropy magnitude. Increasing voltage U0 , which is created by E, U⊥ increases to certain magnitude and later decreases. The anisotropy of continuous thin layers is excited by inequality of conductivity tensor components σ0 ≠ σ⊥. The reason of anisotropy is explained by the model which shows that properties of grain boundaries are defined by unequal probability of transient of charge carrier.


Sign in / Sign up

Export Citation Format

Share Document