scholarly journals 3D Yolk–Shell Structured Si/void/rGO Free-Standing Electrode for Lithium-Ion Battery

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2836
Author(s):  
Jin Shao ◽  
Yi Yang ◽  
Xiaoyan Zhang ◽  
Liming Shen ◽  
Ningzhong Bao

In this study, we have successfully prepared a free-standing Si/void/rGO yolk–shell structured electrode via the electrostatic self-assembly using protonated chitosan. When graphene oxide (GO) is dispersed in water, its carboxyl and hydroxyl groups on the surface are ionized, resulting in the high electronegativity of GO. Meanwhile, chitosan monomer contains -NH2 and -OH groups, forming highly electropositive protonated chitosan in acidic medium. During the electrostatic interaction between GO and chitosan, which results in a rapid coagulation phenomenon, Si/SiO2 nanoparticles dispersed in GO can be uniformly encapsulated between GO sheets. The free-standing Si/void/rGO film can be obtained by freeze-drying, high-pressure compression, thermal reduction and HF etching technology. Our investigation shows that after 200 charge/discharge cycles at the current density of 200 mA·g−1, the specific discharge capacity of the free-standing electrode remains at 1129.2 mAh·g−1. When the current density is increased to 4000 mA·g−1, the electrode still has a specific capacity of 469.2 mAh·g−1, showing good rate performance. This free-standing electrode with a yolk–shell structure shows potential applications in the field of flexible lithium-ion batteries.

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 603 ◽  
Author(s):  
Yuxia Liu ◽  
Kai Jiang ◽  
Shuting Yang

A novel integrated electrode structure was designed and synthesized by direct electrodepositing of Cu–Sn alloy anode materials on the Celgard 2400 separator (Cel-CS electrode). The integrated structure of the Cel-CS electrode not only greatly simplifies the battery fabrication process and increases the energy density of the whole electrode, but also buffers the mechanical stress caused by volume expansion of Cu–Sn alloy active material; thus, effectively preventing active material falling off from the substrate and improving the cycle stability of the electrode. The Cel-CS electrode exhibits excellent cycle performance and superior rate performance. A capacity of 728 mA·h·g−1 can be achieved after 250 cycles at the current density of 100 mA·g−1. Even cycled at a current density of 5 A·g−1 for 650 cycles, the Cel-CS electrode maintained a specific capacity of 938 mA·h·g−1, which illustrates the potential application prospects of the Cel-CS electrode in microelectronic devices and systems.


2020 ◽  
Vol 56 (55) ◽  
pp. 7629-7632 ◽  
Author(s):  
Xiaoyu Wu ◽  
Chen Qian ◽  
Huayu Wu ◽  
Lin Xu ◽  
Lingli Bu ◽  
...  

Based on the confined growth strategy and hydrogen thermal reduction, we constructed and synthesized uniform yolk–shell structured Sn@NHMCSs, which exhibit high specific capacity and good cycling stability as an anode material in lithium ion batteries.


2019 ◽  
Vol 3 (6) ◽  
pp. 1427-1438 ◽  
Author(s):  
Xing Li ◽  
Yongshun Bai ◽  
Mingshan Wang ◽  
Guoliang Wang ◽  
Yan Ma ◽  
...  

Silicon is considered as an anode for next generation lithium ion batteries owing to its low discharge potential (∼0.4 V vs. Li/Li+) and high theoretical specific capacity (3500 mA h g−1).


2018 ◽  
Vol 11 (04) ◽  
pp. 1850067 ◽  
Author(s):  
Zheng Xing ◽  
Chunlai Huang ◽  
Yichen Deng ◽  
Yulong Zhao ◽  
Zhicheng Ju

A flexible strategy is to exploit encapsulating Si nanoparticles into N-doping carbon film (Si-NC) that can effectively localize the Si nanoparticles, thereby solving the problem of serious volume change during cycling as well as facilitating the fast diffusion of Li[Formula: see text], and thus achieving improved anode performance. A maximum capacity of 883.1[Formula: see text]mAh[Formula: see text]g[Formula: see text] at the current density of 100[Formula: see text]mA[Formula: see text]g[Formula: see text] after 50 charge and discharge processes is achieved for Si-NC. Even at a large current density of 2000[Formula: see text]mA[Formula: see text]g[Formula: see text], a specific capacity of 415[Formula: see text]mAh[Formula: see text]g[Formula: see text] is maintained. Moreover, the charge capacity can still almost recover the initial capacity as the current density is reverted to 100[Formula: see text]mA[Formula: see text]g[Formula: see text], indicating that Si-NC has a superior rate performance in lithium storage. This facile synthesis route provides a new perspective to produce Si/C composite at a low cost and large scale with good electrochemical performance.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1156
Author(s):  
Andrzej P. Nowak ◽  
Maria Gazda ◽  
Marcin Łapiński ◽  
Zuzanna Zarach ◽  
Konrad Trzciński ◽  
...  

Tin oxide is one of the most promising electrode materials as a negative electrode for lithium-ion batteries due to its higher theoretical specific capacity than graphite. However, it suffers lack of stability due to volume changes and low electrical conductivity while cycling. To overcome these issues, a new composite consisting of SnO2 and carbonaceous matrix was fabricated. Naturally abundant and renewable chitosan was chosen as a carbon source. The electrode material exhibiting 467 mAh g−1 at the current density of 18 mA g−1 and a capacity fade of only 2% after 70 cycles is a potential candidate for graphite replacement. Such good electrochemical performance is due to strong interaction between amine groups from chitosan and surface hydroxyl groups of SnO2 at the preparation stage. However, the charge storage is mainly contributed by a diffusion-controlled process showing that the best results might be obtained for low current rates.


2017 ◽  
Vol 8 ◽  
pp. 1297-1306 ◽  
Author(s):  
Jin Zhang ◽  
Yibing Cai ◽  
Xuebin Hou ◽  
Xiaofei Song ◽  
Pengfei Lv ◽  
...  

Titanium dioxide (TiO2) nanofibers have been widely applied in various fields including photocatalysis, energy storage and solar cells due to the advantages of low cost, high abundance and nontoxicity. However, the low conductivity of ions and bulk electrons hinder its rapid development in lithium-ion batteries (LIB). In order to improve the electrochemical performances of TiO2 nanomaterials as anode for LIB, hierarchically porous TiO2 nanofibers with different tetrabutyl titanate (TBT)/paraffin oil ratios were prepared as anode for LIB via a versatile single-nozzle microemulsion electrospinning (ME-ES) method followed by calcining. The experimental results indicated that TiO2 nanofibers with the higher TBT/paraffin oil ratio demonstrated more axially aligned channels and a larger specific surface area. Furthermore, they presented superior lithium-ion storage properties in terms of specific capacity, rate capability and cycling performance compared with solid TiO2 nanofibers for LIB. The initial discharge and charge capacity of porous TiO2 nanofibers with a TBT/paraffin oil ratio of 2.25 reached up to 634.72 and 390.42 mAh·g−1, thus resulting in a coulombic efficiency of 61.51%; and the discharge capacity maintained 264.56 mAh·g−1 after 100 cycles, which was much higher than that of solid TiO2 nanofibers. TiO2 nanofibers with TBT/paraffin oil ratio of 2.25 still obtained a high reversible capacity of 204.53 mAh·g−1 when current density returned back to 40 mA·g−1 after 60 cycles at increasing stepwise current density from 40 mA·g−1 to 800 mA·g−1. Herein, hierarchically porous TiO2 nanofibers have the potential to be applied as anode for lithium-ion batteries in practical applications.


2019 ◽  
Author(s):  
Panpan Wang ◽  
Yue Du ◽  
Baoyou Zhang ◽  
Yanxin Yao ◽  
Yuchen Xiao ◽  
...  

The <i>β-</i>phase lithium vanadium oxide bronze (<i>β-</i>Li<i><sub>x</sub></i>V<sub>2</sub>O<sub>5</sub>) with high theoretic specific capacity up to 440 mAh g<sup>-1</sup> is considered as promising cathode materials, however, their practical application is hindered by its poor ionic and electronic conductivity, resulting in unsatisfied cyclic stability and rate capability. Herein, we report the surface decoration of <i>β-</i>Li<i><sub>x</sub></i>V<sub>2</sub>O<sub>5</sub> cathode using both reduced oxide graphene and ionic conductor LaPO<sub>4</sub>, which significantly promotes the electronic transfer and Li<sup>+</sup> diffusion rate, respectively. As a result, the rGO/LaPO<sub>4</sub>/Li<i><sub>x</sub></i>V<sub>2</sub>O<sub>5</sub> composite exhibits excellent electrochemical performance in terms of high reversible specific capacity of 275.7 mAh g<sup>-1</sup> with high capacity retention of 84.1% after 100 cycles at a current density of 60 mA g<sup>-1</sup>, and acceptable specific capacity of 170.3 mAh g<sup>-1</sup> at high current density of 400 mA g<sup>-1</sup>. The cycled electrode is also analyzed by electrochemical impedance spectroscopy, <i>ex-situ </i>X-ray diffraction and scanning electron microscope, providing further insights into the improvement of electrochemical performance. Our results provide an effective approach to boost the electrochemical properties of lithium vanadates for practical application in lithium ion batteries.


2019 ◽  
Author(s):  
Florian Zoller ◽  
Jan Luxa ◽  
Thomas Bein ◽  
Dina Fattakhova-Rohlfing ◽  
Daniel Bousa ◽  
...  

Construction of flexible electrochemical devices for energy storage and generation is of utmost importance in the modern society. In this article, we report the synthesis of flexible MoS2 based composite paper by high-energy shear force milling and simple vacuum filtration. This composite material combines high flexibility, mechanical strength and good chemical stability. Chronopotentiometric charge-discharge measurements were used to determine the capacitance of our paper material. Highest capacitance of 33 mF cm-2 was achieved at current density of 1 mA cm-2 showing potential application in supercapacitors. We further used the material as a cathode for hydrogen evolution reaction (HER) with an onset potential of ca. -0.2 V vs RHE. The onset potential was even lower (ca. -0.1 V vs RHE) after treatment with n-butyllithium suggesting the introduction of new active sites. Finally, a potential use in Lithium ion batteries (LIB) was examined. Our material can be used directly without any binder, additive carbon or copper current collector and delivers specific capacity of 740 mA h g-1 at a current density of 0.1 A g-1. After 40 cycles at this current density the material still reached a capacity retention of 91%. Our findings show that this composite material could find application in electrochemical energy storage and generation devices where high flexibility and mechanical strength are desired.


2021 ◽  
Author(s):  
Yuan Fang ◽  
Tengfei Li ◽  
Fen Wang ◽  
Jianfeng Zhu

Abstract Transition metal oxides as anode materials have received extensive research owing to the high specific capacity. Whereas, the rapid decline of battery capacity caused by volume expansion and low electrical conductivity hinders the practical application of transition metal oxides. This study reported a pseudo-capacitance material polypyrrole coated Fe2O3/Mn2O3 composites material as a high stability anode for lithium-ion batteries. The polypyrrole coating layer can not only serve as a conductive network to improve electrode conductivity but also can be used as a protective buffer layer to suppress the volume change of Fe2O3/Mn2O3 during the charging and discharging process. At the same time, the porous structure of Fe2O3/Mn2O3 composite can not only provide more active sites for lithium storage but also play a certain buffer effect on the volume change of the material. Polypyrrole-coated Fe2O3/Mn2O3 composite as the anode for lithium-ion batteries shows great electrochemical storage performance, with high specific capacity (627 mAh g− 1 at a current density of 1A g− 1), great cycle stability (the capacity not shows obvious signs of attenuation after 500 cycles) and rate performance (432 mAh g− 1 at a current density of 2.0 A g− 1).


Author(s):  
Yong Wang ◽  
Jiawei Li ◽  
Xinyang Li ◽  
Hong Jin ◽  
Wajid Ali ◽  
...  

Graphene-based 2D materials have shown extraordinary promise in electrochemical energy storage, owing to their high electrochemical activity, fast carrier mobility, and large electronic conductivity. However, low specific capacity (<200 mAh...


Sign in / Sign up

Export Citation Format

Share Document