scholarly journals A Critical Review for an Accurate Electrochemical Stability Window Measurement of Solid Polymer and Composite Electrolytes

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3840
Author(s):  
Adrien Méry ◽  
Steeve Rousselot ◽  
David Lepage ◽  
Mickaël Dollé

All-solid-state lithium batteries (ASSLB) are very promising for the future development of next generation lithium battery systems due to their increased energy density and improved safety. ASSLB employing Solid Polymer Electrolytes (SPE) and Solid Composite Electrolytes (SCE) in particular have attracted significant attention. Among the several expected requirements for a battery system (high ionic conductivity, safety, mechanical stability), increasing the energy density and the cycle life relies on the electrochemical stability window of the SPE or SCE. Most published works target the importance of ionic conductivity (undoubtedly a crucial parameter) and often identify the Electrochemical Stability Window (ESW) of the electrolyte as a secondary parameter. In this review, we first present a summary of recent publications on SPE and SCE with a particular focus on the analysis of their electrochemical stability. The goal of the second part is to propose a review of optimized and improved electrochemical methods, leading to a better understanding and a better evaluation of the ESW of the SPE and the SCE which is, once again, a critical parameter for high stability and high performance ASSLB applications.

2013 ◽  
Vol 743-744 ◽  
pp. 53-58 ◽  
Author(s):  
Rui Yang ◽  
Shi Chao Zhang ◽  
Lan Zhang ◽  
Xiao Fang Bi

Solid polymer electrolytes (SPEs) which were composed of poly (ethylene oxide) (PEO), poly (lithium acrylate) (PLiAA), and LiClO4were prepared in order to investigate the influence of LiClO4content on the ionic conductivity of the electrolyte. All of the membranes were investigated by XRD, DSC, and EIS, et.al. The dependence of SPEs conductivity on temperature was measured, and the maximum ionic conductivity is 5.88×10-6S/cm at 293 K for membrane which is composed of PEO+PLiAA+15wt% LiClO4. The electrochemical stability window of the PEO+PLiAA+15wt% LiClO4is 4.75 V verse Li.


2020 ◽  
Vol 13 (5) ◽  
pp. 1318-1325 ◽  
Author(s):  
Xiaofei Yang ◽  
Ming Jiang ◽  
Xuejie Gao ◽  
Danni Bao ◽  
Qian Sun ◽  
...  

Terminal –OH group in PEO-based solid polymer electrolytes is the limiting factor of the electrochemical stability window, replacing it with more stable groups can accelerate the development of high-voltage solid-state batteries.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Yingjian Zhao ◽  
Yong Wang

AbstractPolyethylene oxide (PEO)-based solid polymer electrolytes (SPEs) have important significance for the development of next-generation rechargeable lithium-ion batteries. However, strong coordination between lithium ions and PEO chains results the ion conductivity usually lower than the expectation. In this study, sub-micron montmorillonite is incorporated into the PEO frames as Lewis base center which enables the lithium ions to escape the restraint of PEO chains. After involving montmorillonite (MMT) into the SPEs, the ionic conductivity of SPEs is 4.7 mS cm− 1 at 70 °C which shows a comparable value with that of liquid electrolyte. As coupling with LiFePO4 material, the battery delivers a high discharge capacity of 150.3 mAh g− 1 and an excellent rate performance with a capacity of 111.8 mAh g− 1 at 0.16 C and maintains 58.2 mAh g− 1 at 0.8 C. This study suggests that the customized incorporation of Lewis base materials could offer a promising solution for achieving high-performance PEO-based solid-state electrolyte.


RSC Advances ◽  
2020 ◽  
Vol 10 (43) ◽  
pp. 25496-25499 ◽  
Author(s):  
Yanxin Shen ◽  
Xiaonan Han ◽  
Tonghui Cai ◽  
Haoyu Hu ◽  
Yanpeng Li ◽  
...  

The practical application of aqueous sodium-ion batteries (ASIBs) is limited by the electrolysis of water, which results in a low working voltage and energy density of ASIBs.


2008 ◽  
Vol 73 (12) ◽  
pp. 1777-1798 ◽  
Author(s):  
Olt E. Geiculescu ◽  
Rama V. Rajagopal ◽  
Emilia C. Mladin ◽  
Stephen E. Creager ◽  
Darryl D. Desmarteau

The present work consists of a series of studies with regard to the structure and charge transport in solid polymer electrolytes (SPE) prepared using various new bis(trifluoromethanesulfonyl)imide (TFSI)-based dianionic dilithium salts in crosslinked low-molecular-weight poly(ethylene glycol). Some of the thermal properties (glass transition temperature, differential molar heat capacity) and ionic conductivities were determined for both diluted (EO/Li = 30:1) and concentrated (EO/Li = 10:1) SPEs. Trends in ionic conductivity of the new SPEs with respect to anion structure revealed that while for the dilute electrolytes ionic conductivity is generally rising with increased length of the perfluoroalkylene linking group in the dianions, for the concentrated electrolytes the trend is reversed with respect to dianion length. This behavior could be the result of a combination of two factors: on one hand a decrease in dianion basicity that results in diminished ion pairing and an enhancement in the number of charge carriers with increasing fluorine anion content, thereby increasing ionic conductivity while on the other hand the increasing anion size and concentration produce an increase in the friction/entanglements of the polymeric segments which lowers even more the reduced segmental motion of the crosslinked polymer and decrease the dianion contribution to the overall ionic conductivity. DFT modeling of the same TFSI-based dianionic dilithium salts reveals that the reason for the trend observed is due to the variation in ion dissociation enthalpy, derived from minimum-energy structures, with respect to perfluoroalkylene chain length.


2020 ◽  
pp. 152808372097062
Author(s):  
Muhammad Yameen Solangi ◽  
Umair Aftab ◽  
Muhammad Ishaque ◽  
Aqeel Bhutto ◽  
Ayman Nafady ◽  
...  

Solid polymer electrolytes (SPEs) are the best choice to replace liquid electrolytes in supercapacitors, fuel cells, solar cells and batteries. The main challenge in this filed is the ionic conductivity and thermal stability of SPEs which is still not up to mark, therefore more investigations are needed to address these issues. In this study, PVA/salt based SPEs was fabricated using both solution cast and electro-spinning methods to probe the effect of different salts such as (NaCl, KCl and KI) and their concentrations on the ionic conductivity. Scanning electron microscopy (SEM) x and Fourier Transform Infra-Red (FTIR) have been employed to study the morphology as well as the different functional groups of SPEs, respectively. It was noted that small addition of NaCl, KCl and KI salts in SPEs dramatically increased the ionic conductivity to 5.95×10−6, 5.31×10−6 and 4.83×10−6 S/cm, respectively. Importantly, the SPEs obtained with NaCl via electro-spinning have higher ionic conductivity (5.95×10−6 S/cm) than their casted SPEs (1.87×10−6 S/cm). Thermal stability was also studied at two different temperatures i.e. 80 °C and 100 °C. The weight loss percentage of electrospun SPEs have zero percent weight loss than the solution based SPEs. The combined results clearly indicated that the nature of salt, concentration and fabrication process play a vital role in the ionic conductivity. Also, the NaCl salt with low molecular weight at low concentrations shows an enhanced ionic conductivity.


2012 ◽  
Vol 585 ◽  
pp. 185-189 ◽  
Author(s):  
Rajni Sharma ◽  
Anjan Sil ◽  
Subrata Ray

In the present work, the effect of Li salt i.e. LiClO4 contained in composite plasticizer (PC+DEC) with three different concentrations on ionic transport and other electrochemical properties of PMMA based gel polymer electrolytes synthesized has been investigated. The electrolytes have been synthesized by solution casting technique by varying the wt (%) of salt and plasticizer. The formation of polymer-salt complexes and their structural characterization have been carried out by FTIR spectroscopic and XRD analyses. The room temperature ionic conductivity of the electrolyte composition 0.6PMMA-0.125(PC+DEC)-0.15LiClO4 (wt %) has been found to be maximum whose magnitude is 0.40×10-5 S/cm as determined by ac impedance analysis. The temperature dependent ionic conductivity of electrolyte sample0.6PMMA-0.125(PC+DEC)-0.15LiClO4 has further been investigated. Thermal analyses of electrolyte samples of all three compositions have also been done.


Sign in / Sign up

Export Citation Format

Share Document