scholarly journals Asphalt Mixes Processed with Recycled Concrete Aggregate (RCA) as Partial Replacement of the Natural Aggregate

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4196
Author(s):  
Carlos U. Espino-Gonzalez ◽  
Wilfrido Martinez-Molina ◽  
Elia M. Alonso-Guzman ◽  
Hugo L. Chavez-Garcia ◽  
Mauricio Arreola-Sanchez ◽  
...  

Materials play a fundamental role in any branch of civil engineering. From ancient times to the present day, society has required enormous amounts of construction materials, which implies an excessive exploitation of the natural environment. The present research work consisted in the design and development of asphalt mixes with a partial substitution of the natural aggregate (NA) by means of recycled concrete aggregate (RCA). The mix was designed with the Marshall methodology, considering the next percentages of substitution and addition by mass: 90% NA and 10% RCA; 80% NA and 20% RCA; 70% NA and 30% RCA. The mixtures were elaborated and analysed under the international standards and the Mexican regulation of the Communications and Transport Ministry, to determine the best option regarding their performance. The materials were characterized according to the current regulations and later employed in the mixes design. A total of 38 specimens were elaborated for each mixture, determining the optimum asphalt content; after that, mechanical tests were performed to analyse and determine the best results. In the aftermath of the examination of all mixtures, we concluded that the 70%AN/30%RCA is the best alternative option according to its performance and numeric results, complying with the cited regulations, and allowing a lower content of asphalt during the process.

2019 ◽  
Vol 24 (2) ◽  
Author(s):  
Lidiane Fernanda Jochem ◽  
Diego Aponte ◽  
Marilda Barra Bizinotto ◽  
Janaíde Cavalcante Rocha

ABSTRACT This paper examines the suitability of partially replacing natural aggregate, sand, (NA) with recycled concrete aggregate (RCA) or lightweight aggregate (LWA) in mortars, under the hypothesis that pre-wetting aggregates would produce improvement in mortar properties. Fresh mortar properties such as density, entrained air content, consistency and heat of hydration, as well as hardened mortar properties such as dry density, compressive and flexural strength, and dimensional instability at 0% and 100% saturation were determined. The results show that mortars made with natural aggregate (75%) and recycled concrete aggregate (25%) have similar properties to mortars made with only natural aggregate (100%) and that pre-wetting the aggregates does not influence the properties of mortars significantly. Therefore, partial replacement with recycled concrete aggregate is a viable alternative for producing mortar.


2018 ◽  
Vol 940 ◽  
pp. 128-132 ◽  
Author(s):  
Carlos Uriel Espino González ◽  
Wilfrido Martínez Molina ◽  
Hugo Luis Chávez García ◽  
Judith Alejandra Velázquez Perez ◽  
Rosalía Ruiz Ruiz ◽  
...  

Materials play a fundamental role in any branch of civil engineering. From ancient times to the present day, society has required enormous amounts of construction materials, which implies an excessive exploitation of materials that come directly from nature. This paper explains the main differences, similarities, benefits and characteristics of the 2 designs of asphalt mixtures by means Marshall methodology. The first design is for control mixture, which was elaborated with a conventional asphalt AC-20 and 100% of natural aggregate (NA). The second design is for asphalt mixture with 30% of recycled concrete aggregate (RCA) and 70% of NA. Finally, it was determined that both designs have similar characteristics, which indicates that the use of 30% RCA in asphalt mixtures is adequate. In addition, it represents economic and environmental savings.


2022 ◽  
Vol 11 (1) ◽  
pp. 20-28
Author(s):  
Grzegorz Łój ◽  
Wiesława Nocuń-Wczelik

The aim of current study was to determine the recycled concrete aggregate (RCA) applicability in the production of concrete mixture for vibropressed concrete blocks. The experiments were focused especially on the crushed waste material from the same concrete elements producing plant.  For this type of precast elements only some finer fractions can be implemented and the “earth-moist” consistency of fresh mixture is required. The series of samples was prepared in which the mixture of natural aggregates was partially or totally substituted by recycled concrete aggregate. The 0/4 RCA fraction, which is usually rejected in ready mix concrete technology, plays a role of 0/2 sand.  The substitution of sand fraction was from 20% to 100% respectively. The substitution of the coarser aggregate fractions by 4/16 RCA was also done. The standard properties of vibropressed elements, such as the degree of densification, the density of material, the compressive and splitting tensile strength and the water absorption capacity according to the relevant standards were determined. The parameters of materials with the natural aggregate substitution by RCA are affected by the ratio of recycled concrete aggregate. In most cases the results do not decline specially from those for reference samples, when only the natural sand (0/2) fraction is substituted by the 0/4 recycled aggregate. As one could expect, as lower the substitution, as better the test results. The partial substitution of natural aggregate by coarser fractions requires experimental verification; over 20% substitution of natural aggregate by 4/8, 8/16 or 0/16 RCA should be excluded.


2020 ◽  
Vol 12 (18) ◽  
pp. 7380
Author(s):  
Qingfu Li ◽  
Jing Hu

This research investigates the effect of using recycled concrete aggregate (RCA) as a partial replacement of natural aggregate (NA) on the mechanical and durability-related properties of a cement-stabilized recycled concrete aggregate (CSR) mixture. In this case, mixtures were prepared with 0%, 40%, 70%, and 100% (by weight) RCA to replace NA, and cement contents of 4%, 5%, and 6% were used in this study. Test parameters included the replacement ratio, cement content, and curing time. Tests were carried out to establish the unconfined compressive strength (UCS), indirect tensile strength (ITS), drying shrinkage, and water loss ratio of each mix proportion. The preliminary results of UCS and ITS tests indicated that the incorporation of RCA resulted in a decrease of strength compared with a cement-stabilized macadam (CSM) mixture, but the seven-day strength of the CSR mixture met the related requirements of road bases. The increase in cement content and curing time had an obvious effect on strength improvement. The drying shrinkage test showed that the drying shrinkage properties of the CSR mixture were obviously reduced with a high replacement ratio. It is evident that the CSM mixture presented a better drying shrinkage performance than that of the CSR mixture.


2019 ◽  
Vol 12 (1) ◽  
pp. 250 ◽  
Author(s):  
Debora Acosta Álvarez ◽  
Anadelys Alonso Aenlle ◽  
Antonio José Tenza-Abril ◽  
Salvador Ivorra

The main objective of this work is to evaluate the properties of hot asphalt mixtures that have been manufactured with different recycled concrete aggregate (RCA) percentages (0%, 20%, 40%, 60% and 80% of the fraction 5–13 mm) and asphalt (4%, 4.5% and 5%). Dense asphalt mixtures were made; partially replacing the natural aggregate (NA) fraction between 5 and 13 mm. Marshall specimens were manufactured to determine the main properties of the asphalt concrete (AC) in terms of density, voids, stability and deformation. Additionally, the optimal asphalt content (OAC) was determined, and measured the water sensibility, the stiffness modulus and the permanent deformation. The results corroborate the potential for using these sources of construction and demolition waste (CDW) as a RCA in asphalt concrete and show that the hot asphalt mixtures with up to 40% substitution of natural aggregate by recycled aggregate in the fraction 5–13 mm present good behavior.


2020 ◽  
Vol 220 ◽  
pp. 01098
Author(s):  
Mohammad Tabrez Ali ◽  
Ibadur Rahman ◽  
Nirendra Dev ◽  
Priyanka Singh

When sustainability has become a primary measure of the selection of the building materials in the construction industry over the past decades, researchers all around the world have been looking upon for alternatives to reduce the overall environmental impact of the construction materials while not compromising the strength and durability. The factors like manufacturing, reusability, recyclability, disposal etc, are the criteria of utmost attention affecting the overall life cycle impact of the construction materials. In this prospect the Recycled Concrete Aggregate (RCA) has shown up as an exceptionally viable contender for the manufacturing of concrete with several environmental benefits over the Natural Aggregate (NA) and has already been identified by industry and several government agencies across the globe. The efficient material use of RCA can potentially deliver an inferior though competent concrete in comparison to the NA while averring the criteria of sustenance. The present study delves into the calculation of the proportion of the RCA in a mix design for achieving maximum compressive strength. The experimental setup constituted the casting of concrete cubes of control mix design of M40 grade with proportions of RCA varying from 0-100 percent spread over a space of 10% with NA which were later put to tests. The thorough investigation on the casted concrete cubes lead to the conclusion that the mix design with 50% proportion of RCA in addition to 50% proportion of NA delivered the maximum compressive strength, an average value of 8.23% higher than that of the normal concrete and the highest Rebound Number, an average value of 53.92 for the M40 grade concrete thereby showcasing the feasibility of producing structural concrete with RCA. The results are asserted to be governed by the better bonding between the RCA and NA and due to the significant increase in the water retention capacity by the provision of RCA in the mix.


2021 ◽  
Author(s):  
Jonathan Andal

Today, there is a growing need for the implementation of sustainability in construction. Continuous construction and rehabilitation projects have begun to deplete virgin aggregate sources. The use of recycled concrete aggregate (RCA) in concrete has been regarded as a sustainable and environmentally friendly alternative aggregate source. This thesis focuses on producing RCA of preserved quality through the use of a new protocol aimed at maintaining the original properties of returned-to-plant concrete. The performance of RCA with preserved quality and commercially available RCA when used in concrete was compared. Different concrete properties were evaluated including the fresh, hardened and durability characteristics. Results showed that the RCA with preserved quality performed better in many categories, including strength, drying shrinkage and salt scaling resistance compared to the commercial RCA. The use of 30% preserved-quality RCA as partial replacement of coarse aggregate produced concrete of comparable quality to that produced with virgin aggregate.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 430
Author(s):  
Jawad Ahmad ◽  
Rebeca Martínez-García ◽  
Jesús de-Prado-Gil ◽  
Kashif Irshad ◽  
Mohammed A. El-Shorbagy ◽  
...  

The current practice of concrete is thought to be unsuitable because it consumes large amounts of cement, sand, and aggregate, which causes depletion of natural resources. In this study, a step towards sustainable concrete was made by utilizing recycled concrete aggregate (RCA) as a coarse aggregate. However, researchers show that RCA causes a decrease in the performance of concrete due to porous nature. In this study, waste glass (WG) was used as a filler material that filled the voids between RCA to offset its negative impact on concrete performance. The substitution ratio of WG was 10, 20, or 30% by weight of cement, and RCA was 20, 40, and 60% by weight of coarse aggregate. The slump cone test was used to assess the fresh property, while compressive, split tensile, and punching strength were used to assess the mechanical performance. Test results indicated that the workability of concrete decreased with substitution of WG and RCA while mechanical performance improved up to a certain limit and then decreased due to lack of workability. Furthermore, a statical tool response surface methodology was used to predict various strength properties and optimization of RCA and WG.


Sign in / Sign up

Export Citation Format

Share Document