scholarly journals Influence of Fluorine-Containing Monomer Content on the Hydrophobic and Transparent Properties of Nanohybrid Silica Polyacrylate Coating Materials

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4261
Author(s):  
Chih-Ming Huang ◽  
Her-Yung Wang ◽  
Sing-Yuan Fang ◽  
Wein-Duo Yang

Nanosilica-modified, fluorine-containing polyacrylate hybrid coating materials, consisting of dodecafluoroheptyl methacrylate (DFMA), methyl methacrylate (MMA), 2-ethyl hexyl acrylate (2-EHA), 3-(trimethoxysilyl) propyl methacrylate (KH-570), and tetraethylorthosilicate (TEOS), are synthesized successfully by free radical polymerization and the sol–gel process. It is revealed that the content of the fluorine-containing polyacrylate hybrid coating materials from DFMA monomers significantly improves the properties of the films. The polyacrylate coating film prepared with a weight ratio of DFMA/MMA at 1:5 exhibits the largest water contact angle of 105.4°, which demonstrates that DFMA can effectively improve the hydrophobicity of the coating film. Moreover, the silicon coupling agent (KH-570) is used to graft silica with acrylate. Spherical in shape, the surface morphology of the nanohybrid film exhibits a core–shell structure, which increases the surface roughness and enhances the hydrophobic properties. The as-prepared fluorine-containing nanohybrid silica polyacrylate film possesses a high transmittance of 89–97% in the visible light region, indicating its potential as a very attractive solution in many practical areas.

2012 ◽  
Vol 16 ◽  
pp. 1-7
Author(s):  
Nazanin Farhadyar ◽  
Mirabdullah Seyed Sadjadi

In this paper, we report preparation of hydrophilic hybrid nanocomposite coatings on glass substrates using Zinc acetate solutions based on 3-glycidoxypropyltrimethoxysilane (GPTMS), epoxy resin, aromatic amine (HY850), polyethylene glycol (PEG) and surfactant (polyoxyethylene(4)laurylether) by the sol-gel process. Furthermore, the effects of PEG addition to the precursor solutions on the hydrophilic property and microstructure of the resultant coating film were studied. The hydrophilic behavior study of the synthesized hybrid was performed by adding different amounts of polyethylene glycol precursor to the hybrid solution. Experimental results show that, among different amounts of PEGs, the best results are obtained by addition of PEGs (400) to the hybrid solution which can decrease the water contact angles down to 16 and using surfactant down to 0, and increase the free surface energy. Coated glass exhibits a higher strength than uncoated glass. Attenuated total reflectance infrared spectroscopic (ATR-IR) technique was used to characterize the structure of the hybrid films. The chemical structure of obtained network affects morphology of the coating. The morphology of the hybrid coatings was examined by transmission electron microscopy (TEM). The hybrid systems have a unit form structure and the inorganic phases were in the nanosize scale,


2011 ◽  
Vol 391-392 ◽  
pp. 505-510
Author(s):  
Yan Pang ◽  
Yao Chen ◽  
Qi Qiu ◽  
Fang Wang ◽  
Zhang Tao

Optically transparent hydrophobic inorganic-organic hybrid sols was obtained employing Tetraethylorthosilicate (TEOS), Methyltriethoxysilane (MTES), and Heptadecafluoro-1, 1, 2, 2-tetradecyl)trimethoxysilane (FAS), with nitric acid as catalyst. Hybrid coating was dip coated on glass slides. The results showed that the water contact angle of MTES modified SiO2 coating was only 105° . As the weight ratio FAS varied from 0 to 8 wt.%, the water contact angle reached as high as 116.5°. The coated glass presented transmittance of 92%, 2% higher than the non-coated ones. The increase in transmittance suggested an antireflective effect of the hybrid coating. With further SEM characterization of the surface morphology, we finally obtained the optimized optically transparent hydrophobic hybrid coating with the MTES/TEOS_as 1/1(molar ratio) and FAS as 2 wt.%.


1998 ◽  
Vol 519 ◽  
Author(s):  
Y. Yan ◽  
Z. Duan ◽  
D.-G. Chen ◽  
S. Ray Chaudhuri

AbstractThe insoluble, strongly hydrogen bonded organic pigment of 3,6-bis-(4-chlorphenyl)-l,4- diketopyrrolo [3,4-c] pyrrole was transiently blocked by adding carbamate groups, and consequently incorporated into organic-inorganic hybrid matrices by a sol-gel process. The homo- (pigment-pigment) and hetero-intermolecular (pigment-matrix) interactions were found to control both the assembly and dispersion of pigment molecules in the hybrid coating films. A weaker interaction between matrices and pigment molecules results in aggregation of the carbamate pigment in the methyl-silicate films. A stronger interaction forms a homogenous dispersion and coloration of the phenyl-silicate films. The as-prepared methyl- and phenylsilicate films doped with the organic pigment were distinguished by a morphology change and a blue (hypsochromic) shift in absorption from 550 to 460 nm. Thermal treatment can remove the carbamate groups and in-situ form the organic pigment in the hybrid films.


2020 ◽  
Vol 141 ◽  
pp. 105540
Author(s):  
Linlong Meng ◽  
Haoxin Zhu ◽  
Bing Feng ◽  
Zhenhua Gao ◽  
Di Wang ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 72 ◽  
Author(s):  
Simona Ortelli ◽  
Anna Luisa Costa

Organic–inorganic hybrid (ceramer) coatings were synthesized and deposited on the polyester nonwoven fabrics through the sol–gel process. This promoted the formation of an insulating barrier that was able to enhance the thermal stability and the hydrophobicity of fabrics. The hybrid phase is made of an organic network arising from different alkoxysilane precursors (trimethoxymethylalkoxysilane (TMEOS), 3-aminopropyl-trimethoxyalkoxysilane (APTMS), and tetraethylorthosilicate (TEOS)) and inorganic phase made of titanium dioxide TiO2 nanoparticles (NPs) and, in some cases, coated by P-based compound. The characterization of hybrid phase at liquid (size distribution and zeta potential of dispersed nanoparticles), dried state (crystalline phase, thermogravimetric (TGA), and Fourier transform infrared spectroscopic (FTIR) analyses), and on deposited coatings (contact angle, burn-out tests) aimed to find a correlation between the physicochemical properties of ceramer and functional performances of coated fabrics (thermal stability and hydrophobicity). The results showed that all ceramer formulations were able to improve the char formation after burn-out, in particular the highest thermal stability was obtained in the presence of TMEOS precursor and TiO2 NPs coated by P-based compound, which also provided the highest hydrophobicity. In conclusion, we presented an environmentally friendly and easily scalable process for the preparation of ceramer formulations capable of being formed into transparent, thermal-resistant, and hydrophobic fabric coatings, whose functions are extremely challenging for the textile market.


2006 ◽  
Vol 966 ◽  
Author(s):  
Ricardo Melgarejo ◽  
Maharaj S Tomar ◽  
Rahul Singhal ◽  
Ram S Katiyar

ABSTRACTNickel-substituted Bi4Ti3O12 (i.e., Bi4-xNixTi3O12) were synthesized by sol-gel process for different compositions. Thin films were deposited on Pt (i.e., Pt/TiO2/SiO2/Si) substrate by spin coating. Materials were characterized by x-ray diffraction and Raman spectroscopy. This study indicates that the material makes a solid solution for the compositions: x = 0.00, 0.05, 0.10, 0.15, 0.20, and 0.30, where a Ni ion replaces the Bi site. The prominent effect of Ni substitution was observed in low-frequency Raman modes. Sol-gel derived thin films of Bi4-xNixTi3O12 on a Pt substrate and post annealed at 700°C were tested for ferroelectric response which showed high remnant polarization (Pr = 22 μC/cm2 for x = 0.15). The leakage current (less then 10−7 A/cm2) at low field was observed in the film with composition x = 0.15 .The polarization of the BNiT (x = 0.15) film decreased to 83% of the initial value after 1×109 switching cycles These results indicate the potential application of Ni substituted bismuth titanate films in non-volatile ferroelectric memories.


Sign in / Sign up

Export Citation Format

Share Document