scholarly journals Mesoscale Mechanisms in Viscoplastic Deformation of Metals and Their Applications to Constitutive Models

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4667
Author(s):  
Wen Lai Huang ◽  
Lin Zhang ◽  
Kaiguo Chen ◽  
Guo Lu

Deformation of metals has attracted great interest for a long time. However, the constitutive models for viscoplastic deformation at high strain rates are still under intensive development, and more physical mechanisms are expected to be involved. In this work, we employ the newly-proposed methodology of mesoscience to identify the mechanisms governing the mesoscale complexity of collective dislocations, and then apply them to improving constitutive models. Through analyzing the competing effects of various processes on the mesoscale behavior, we have recognized two competing mechanisms governing the mesoscale complex behavior of dislocations, i.e., maximization of the rate of plastic work, and minimization of the elastic energy. Relevant understandings have also been discussed. Extremal expressions have been proposed for these two mesoscale mechanisms, respectively, and a stability condition for mesoscale structures has been established through a recently-proposed mathematical technique, considering the compromise between the two competing mechanisms. Such a stability condition, as an additional constraint, has been employed subsequently to close a two-phase model mimicking the practical dislocation cells, and thus to take into account the heterogeneous distributions of dislocations. This scheme has been exemplified in three increasingly complicated constitutive models, and improves the agreements of their results with experimental ones.

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5697
Author(s):  
Chang Sun ◽  
Shihong Yue ◽  
Qi Li ◽  
Huaxiang Wang

Component fraction (CF) is one of the most important parameters in multiple-phase flow. Due to the complexity of the solid–liquid two-phase flow, the CF estimation remains unsolved both in scientific research and industrial application for a long time. Electrical resistance tomography (ERT) is an advanced type of conductivity detection technique due to its low-cost, fast-response, non-invasive, and non-radiation characteristics. However, when the existing ERT method is used to measure the CF value in solid–liquid two-phase flow in dredging engineering, there are at least three problems: (1) the dependence of reference distribution whose CF value is zero; (2) the size of the detected objects may be too small to be found by ERT; and (3) there is no efficient way to estimate the effect of artifacts in ERT. In this paper, we proposed a method based on the clustering technique, where a fast-fuzzy clustering algorithm is used to partition the ERT image to three clusters that respond to liquid, solid phases, and their mixtures and artifacts, respectively. The clustering algorithm does not need any reference distribution in the CF estimation. In the case of small solid objects or artifacts, the CF value remains effectively computed by prior information. To validate the new method, a group of typical CF estimations in dredging engineering were implemented. Results show that the new method can effectively overcome the limitations of the existing method, and can provide a practical and more accurate way for CF estimation.


Author(s):  
Emmanuel Porcheron ◽  
Yohan LEBLOIS ◽  
Thomas Gélain ◽  
Christophe CHAGNOT ◽  
Christophe Journeau ◽  
...  

Abstract The general context of this paper is an evaluation of strategies that can be used to mitigate aerosol dispersion during fuel debris or corium retrieval in damaged Fukushima Daiichi reactors. Knowledge of the aerosol source terms released during fuel debris retrieval operations is one of the key factors for assessing aerosol dispersion leading to the potential dissemination of radionuclides into the environment. Our approach is to couple experimental results from integral tests obtained during laser cutting experiments, analytical tests performed in a dedicated facility to reproduce two-phase flow such as flows representative of pool scrubbing and spray scrubbing conditions, and numerical simulations. Integral tests provide relevant information on the airborne particle release fraction during laser cutting for underwater conditions at different water depths, such as the particle concentration and particle size distribution. However, the detailed characterization of two-phase flows, such as the size and velocity of gas bubble and water droplets, is not possible during laser cutting integral tests. Therefore, a more analytical approach is necessary to obtain detailed information on two-phase flow, composed of bubbles in water, inducing pool scrubbing phenomenon, and droplets in gas generated by spray scrubbing systems, which are essential to the physical mechanisms of both processes and enable their respective efficiencies to be evaluated. The main objectives of this work were to develop models and ensure their validation based on experimental approach for predicting the pool scrubbing and spray scrubbing efficiencies in the context of fuel debris removal at Fukushima Daiichi.


2004 ◽  
Vol 819 ◽  
Author(s):  
Irina V. Belova ◽  
Graeme E. Murch

AbstractWe address the problem of calculating the long-time-limit effective diffusivity in stable two- phase polycrystalline material. A phenomenological model is used where the high diffusivity interphase boundaries are treated as connected “coatings” of the individual grains. Derivation of expressions for the effective diffusivity with segregation is made along Maxwell lines. Monte Carlo simulation using lattice-based random walks is used to test the validity of the expressions. It is shown that for the case analysed the derived expressions for the effective diffusivity are in very good agreement with simulation results. The equivalent of the Hart equation is also derived. It is shown to be in poor agreement with simulation results.


2020 ◽  
Vol 18 (6) ◽  
pp. 696-704
Author(s):  
Dieter H. Pahr ◽  
Andreas G. Reisinger

Abstract Purpose of Review Image-based finite element analysis (FEA) to predict and understand the biomechanical response has become an essential methodology in musculoskeletal research. An important part of such simulation models is the constitutive material model of which recent advances are summarized in this review. Recent Findings The review shows that existing models from other fields were introduced, such as cohesion zone (cortical bone) or phase-field models (trabecular bone). Some progress has been made in describing cortical bone involving physical mechanisms such as microcracks. Problems with validations at different length scales remain a problem. Summary The improvement of recent constitutive models is partially obscured by uncertainties that affect overall predictions, such as image quality and calibration or boundary conditions. Nevertheless, in vivo CT-based FEA simulations based on a sophisticated constitutive behavior are a very valuable tool for clinical-related osteoporosis research.


Author(s):  
Silvia Wognum ◽  
Michael S. Sacks

Due to the complexity in determining multi-constituent tissue properties, most structural constitutive models for soft tissues focus on a single constituent. However, many tissues contain multiple load-bearing constituents, such as collagen fibers and smooth muscle (SM) cells. Moreover, to elucidate how observed changes in tissue components are related to altered net mechanical behavior at the tissue level, structural constitutive models require physiological relevant model parameters and formulations for changes in referential configuration when one component is physically removed. As an excellent example application that underscores these issues, we have examined the urinary bladder wall (UBW), which undergoes large deformations and exhibits highly nonlinear and anisotropic mechanical behavior [1,2]. Moreover, it undergoes profound remodeling in response to different pathologies such as spinal cord injury (SCI) [1,2].


2011 ◽  
Vol 48 (12) ◽  
pp. 1803-1816 ◽  
Author(s):  
F. Bourrier ◽  
S. Lambert ◽  
A. Heymann ◽  
P. Gotteland ◽  
F. Nicot

Cellular structures are efficient technological solutions for rockfall protection. A multi-scale approach is used to develop a cellular rockfall protection structure model for engineering purposes. The macroscopic structure is composed of mesoscale individual layers made up of rocky particles contained in wire netting cages, fine granular material, and a reinforced embankment. Simple constitutive models were developed for the different mesoscale layers of the structure. Information is gathered from experiments at the layer scale to calibrate the parameters of the constitutive models. The capacities of the model are evaluated by comparisons between simulations and impact experiments on small structures. Despite quantitative differences, the comparative analysis highlights that the structure model can account for the main physical mechanisms occurring during the impact on sandwich structures. This analysis also emphasizes the model’s applicability for engineering purposes.


Author(s):  
Miad Yazdani ◽  
Abbas A. Alahyari ◽  
Hailing Wu ◽  
Thomas D. Radcliff

Two-phase flow distribution inside evaporator headers has been a challenging problem for a long time and having a robust predictive tool could substantially alleviate the costs associated with experimentation with different concepts and configurations. The use of a two-phase CFD model to predict flow distribution inside the header and at the discharge ports is demonstrated in this paper. The numerical domain is comprised of an inlet pipe and a distributor tube representing the header with a series of discharge ports. The flow distribution was initially verified using an air–water experiment, where the two-phase modeling approach, mesh requirements, and discretization schemes were defined. Next, the model was used to predict distribution of R134a in a typical heat exchanger distributor. The flow distribution across the discharge ports was provided to a discretized correlation-based heat exchanger model to predict the temperature and quality distribution along the length of the heat exchanger. The resultant temperature distribution is validated against IR imaging results for various operating conditions and header orientations.


Sign in / Sign up

Export Citation Format

Share Document