scholarly journals Nondestructive Testing Based Compressive Bearing Capacity Prediction Method for Damaged Wood Components of Ancient Timber Buildings

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5512
Author(s):  
Lihong Chang ◽  
Wei Qian ◽  
Hao Chang ◽  
Xiaohong Chang ◽  
Taoping Ye

In this research, a wave-drag modulus nondestructive testing method was proposed to predict the compressive bearing capacity of damaged wood components. Using an ancient Chinese building as a case study, internal and external inspections were performed to obtain defect data and related tree species information. Using the same tree species, wave-drag modulus and scale tests were carried out to predict the residual bearing capacity when there was damage in the form of internal cavities or edge material reduction and to compare the damage and loss experimental data. The results show that the internal defect combination model established by two nondestructive testing methods (stress wave and impedance meter) based on the weight distribution can accurately determine the internal damage condition of wood components. There was a significant correlation between wave-drag modulus and compressive strength along the wood grains. The measured values of wood components with different defects were consistent with the theoretical values predicted by the wave-drag modulus, which can effectively improve the prediction of residual bearing capacity. In addition, it was determined that edge material reduction is more destructive to a wood component than the presence of an interior cavity. Thus, the wave-drag modulus can quickly locate vulnerable sections and provide a relevant basis for judging the material condition of wood components in ancient buildings.

2015 ◽  
Vol 751 ◽  
pp. 131-136
Author(s):  
Jie Tang ◽  
Mao Cheng ◽  
Guo Gen Huang ◽  
Hong Shu ◽  
Hui Ting Xu

In this paper, research on a testing method of indentation test proposed by F M Haggag is discussed first, and the experimental testing research on metallic material properties with strain aging is carried out and discussed using indentation test. The authors proposed to use indentation test to measure the properties of metallic materials with strain aging embrittlement based on experimental verification. And it provides a possibility to measure the properties of metallic materials with strain aging using nondestructive testing method.


Sign in / Sign up

Export Citation Format

Share Document