scholarly journals Prediction of Mechanical Properties of Artificially Weathered Wood by Color Change and Machine Learning

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6314
Author(s):  
Vahid Nasir ◽  
Hamidreza Fathi ◽  
Arezoo Fallah ◽  
Siavash Kazemirad ◽  
Farrokh Sassani ◽  
...  

Color parameters were used in this study to develop a machine learning model for predicting the mechanical properties of artificially weathered fir, alder, oak, and poplar wood. A CIELAB color measuring system was employed to study the color changes in wood samples. The color parameters were fed into a decision tree model for predicting the MOE and MOR values of the wood samples. The results indicated a reduction in the mechanical properties of the samples, where fir and alder were the most and least degraded wood under weathering conditions, respectively. The mechanical degradation was correlated with the color change, where the most resistant wood to color change exhibited less reduction in the mechanical properties. The predictive machine learning model estimated the MOE and MOR values with a maximum R2 of 0.87 and 0.88, respectively. Thus, variations in the color parameters of wood can be considered informative features linked to the mechanical properties of small-sized and clear wood. Further research could study the effectiveness of the model when analyzing large-sized timber.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Pavel Stefanovič ◽  
Rokas Štrimaitis ◽  
Olga Kurasova

In the paper, the flight time deviation of Lithuania airports has been analyzed. The supervised machine learning model has been implemented to predict the interval of time delay deviation of new flights. The analysis has been made using seven algorithms: probabilistic neural network, multilayer perceptron, decision trees, random forest, tree ensemble, gradient boosted trees, and support vector machines. To find the best parameters which give the highest accuracy for each algorithm, the grid search has been used. To evaluate the quality of each algorithm, the five measures have been calculated: sensitivity/recall, precision, specificity, F-measure, and accuracy. All experimental investigation has been made using the newly collected dataset from Lithuania airports and weather information on departure/landing time. The departure flights and arrival flights have been investigated separately. To balance the dataset, the SMOTE technique is used. The research results showed that the highest accuracy is obtained using the tree model classifiers and the best algorithm of this type to predict is gradient boosted trees.


2018 ◽  
Author(s):  
Steen Lysgaard ◽  
Paul C. Jennings ◽  
Jens Strabo Hummelshøj ◽  
Thomas Bligaard ◽  
Tejs Vegge

A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


Author(s):  
Dhaval Patel ◽  
Shrey Shrivastava ◽  
Wesley Gifford ◽  
Stuart Siegel ◽  
Jayant Kalagnanam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document