scholarly journals Study on Meso-Structure Evolution in Granular Matters Based on the Contact Loop Recognition and Determination Technique

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6542
Author(s):  
Jiake Yang ◽  
Qun Qi

On the mesoscopic scale, granular matter is tessellated into contact loops by a contact network. The stability of granular matter is highly dependent on the evolution of contact loops, including the number and area evolutions of contact loops with different geometric shapes (which can reflect the mechanical variables in the macroscale). For the features of numerous loops with complex geometry shapes in contact network images, a contact loop recognition and determination technique was developed in this study. Then, numerical biaxial compression tests were performed by the discrete element method (DEM) to investigate how the meso-structural indexes evolve along with the macro-mechanical indexes. The results show that the proposed Q-Y algorithm is effective in determining the geometric types of contact loops from contact network images. The evolution of contact loops is most active in the hardening stage, during which the number percentages of L3 (loops with three sides) and L6+ (loops with six or more sides) show opposite evolution patterns. For the area percentage, only L6+ increases while others decrease. Considering the meso-structural indexes (number percentage and area percentage of loops) are sensitive to the change of macro-mechanical indexes (deviatoric stress, axial strain, and volumetric strain) in the hardening stage. Multivariate models were established to build a bridge between the meso-structure and the macro-mechanics.

2016 ◽  
Vol 53 (10) ◽  
pp. 1583-1599 ◽  
Author(s):  
David Kurz ◽  
Jitendra Sharma ◽  
Marolo Alfaro ◽  
Jim Graham

Clays exhibit creep in compression and shear. In one-dimensional compression, creep is commonly known as “secondary compression” even though it is also a significant component of deformations resulting from shear straining. It reflects viscous behaviour in clays and therefore depends on load duration, stress level, the ratio of shear stress to compression stress, strain rate, and temperature. Research described in the paper partitions strains into elastic (recoverable) and plastic (nonrecoverable) components. The plastic component includes viscous strains defined by a creep rate coefficient ψ that varies with plasticity index and temperature (T), but not with stress level or overconsolidation ratio (OCR). Earlier elastic–viscoplastic (EVP) models have been modified so that ψ = ψ(T) in a new elastic–thermoviscoplastic (ETVP) model. The paper provides a sensitivity analysis of simulated results from undrained (CIŪ) triaxial compression tests for normally consolidated and lightly overconsolidated clays. Axial strain rates range from 0.15%/day to 15%/day, and temperatures from 28 to 100 °C.


Author(s):  
Leysan Kh. Rysaeva ◽  
Dmitry V. Bachurin ◽  
Ramil T. Murzaev ◽  
Dina U. Abdullina ◽  
Elena A. Korznikova ◽  
...  

Close packed carbon nanotube bundles are materials with highly deformable elements, for which unusual deformation mechanisms are expected. Structural evolution of the zigzag carbon nanotube bundle subjected to biaxial lateral compression with the subsequent shear straining is studied under plane strain conditions using the chain model with a reduced number of degrees of freedom. Biaxial compression results in bending of carbon nanotubes walls and formation of the characteristic pattern, when nanotube cross-sections are inclined in the opposite directions alternatively in the parallel close-packed rows. Subsequent shearing up to a certain shear strain leads to an appearance of shear bands and vortex-like displacements. Stress components and potential energy as the functions of shear strain for different values of the biaxial volumetric strain are analyzed in detail. A new mechanism of carbon nanotube bundle shear deformation through cooperative, vortex-like displacements of nanotube cross sections is reported.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yan-Shuang Yang ◽  
Wei Cheng ◽  
Zhan-Rong Zhang ◽  
Hao-Yuan Tian ◽  
Kai-Yue Li ◽  
...  

The energy dissipation usually occurs during rock failure, which can demonstrate the meso failure process of rock in a relatively accurate way. Based on the results of conventional triaxial compression experiments on the Jinping marble, a numerical biaxial compression model was established by PFC2D to observe the development of the micro-cracks and energy evolution during the test, and then the laws of crack propagation, energy dissipation and damage evolution were analyzed. The numerical simulation results indicate that both the crack number and the total energy dissipated during the loading process increase with confining pressures, which is basically consistent with the experiment results. Two damage variables were presented in terms of the density from other researchers’ results and energy dissipation from numerical simulation, respectively. The energy-based damage variable varies with axial strain in the shape of “S,” and approaches one more closely than that based on density at the final failure period. The research in the rock failure from the perspective of energy may further understand the mechanical behavior of rocks.


2012 ◽  
Vol 174-177 ◽  
pp. 24-29
Author(s):  
Bo Zhou ◽  
Ji Wei Li ◽  
Peng Shuai

Abstract. The regular grain orientation of granular materials is a common phenomenon in nature. Based on the research of grain shape effect on mechanical property of granular materials, two kinds of idealized shape grain (kind of long rod and square) assemblies with different grain orientation were studied by simulated biaxial compression test using Discrete Element Method. The significant orientation which can be computed as the mean value of all grain orientation is introduced to represent the orientation regularity of granular materials. In order to study the anisotropy, the mobilized friction angle and volumetric strain of assemblies with different significant orientation were obtained under both vertical and horizontal loading. The results show that the regular orientation of grains influences the movement such as motion and rotation obviously; with the increasing of significant orientation, peak mobilized friction angle of long rod grain assembly gradually increases under horizontal loading, and decreasing under vertical loading.


2019 ◽  
Vol 92 ◽  
pp. 16005
Author(s):  
Hansini Mallikarachchi ◽  
Kenichi Soga

When saturated granular materials which are dilative in nature are subjected to the undrained deformation, their strength increases due to the generation of negative excess pore pressure. This phenomenon is known as dilative hardening and can be witnessed in saturated dense sand or rocks during very fast loading. However, experimental evidence of undrained biaxial compression tests of dense sand shows a limit to this dilative hardening due to the formation of shear bands. There is no consensus in the literature about the mechanism which triggers these shear bands in the dense dilative sand under isochoric constraint. The possible theoretical reasoning is the local drainage inside the specimen under the globally undrained condition, which is challenging to be monitored experimentally. Hence, both incept of localisation and post-bifurcation of the saturated undrained dense sand demand further numerical investigation. Pathological mesh dependency hinders the ability of the finite element method to represent the localisation without advanced regularisation methods. This paper attempt to provide a macroscopic constitutive behaviour of the undrained deformation of the saturated dense sand in the presence of a locally drained shear band. Discontinuation of dilatant hardening due to partial drainage between the shear band and the adjacent material is integrated into the constitutive model without changing governing equilibrium equations. Initially, a classical bifurcation analysis is conducted to detect the inception and inclination of the shear band based on the underlying drained deformation. Then a post-bifurcation analysis is carried out assuming an embedded drained or partially drained shear band at gauss points which satisfy bifurcation criterion. The smeared shear band approach is utilised to homogenise the constitutive relationship. It is observed that the dilatant hardening in the saturated undrained dense sand is reduced considerably due to the formation of shear bands.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Suifeng Wang ◽  
Fei Tan ◽  
Minglong You ◽  
Yu-Yong Jiao ◽  
Fubin Tu

Investigating the crack initiation stress of rocks is vital for understanding the gradual damage process of rocks and the evolution law of internal cracks. In this paper, the particle flow code method is used to conduct biaxial compression tests on a marble model with an elliptical crack under different confining pressures. According to the evolution status of microcracks in the rock during compression, four characteristic stresses are defined to reflect the gradual damage process of the marble. Two different methods are used to obtain crack initiation stress of rocks, and the calculation results are compared with those based on Griffith’s strength theory to verify the accuracy of this theory under compressive stress. Based on the numerical simulation results, the evolution law for the strength parameters of marble with the degree of damage is described. According to the proportional relationship between the peak stress and crack initiation stress, a new method for predicting the initiation stress is proposed, whose effectiveness is verified. Overall, the results of this study can serve as a useful guide for solving the important problems of slab cracking and rockburst encountered in underground space engineering.


Computation ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 27 ◽  
Author(s):  
Dina U. Abdullina ◽  
Elena A. Korznikova ◽  
Volodymyr I. Dubinko ◽  
Denis V. Laptev ◽  
Alexey A. Kudreyko ◽  
...  

Structure evolution and mechanical response of the carbon nanotube (CNT) bundle under lateral biaxial compression is investigated in plane strain conditions using the chain model. In this model, tensile and bending rigidity of CTN walls, and the van der Waals interactions between them are taken into account. Initially the bundle in cross section is a triangular lattice of circular zigzag CNTs. Under increasing strain control compression, several structure transformations are observed. Firstly, the second-order phase transition leads to the crystalline structure with doubled translational cell. Then the first-order phase transition takes place with the appearance of collapsed CNTs. Further compression results in increase of the fraction of collapsed CNTs at nearly constant compressive stress and eventually all CNTs collapse. It is found that the potential energy of the CNT bundle during deformation changes mainly due to bending of CNT walls, while the contribution from the walls tension-compression and from the van der Waals energies is considerably smaller.


2019 ◽  
Vol 92 ◽  
pp. 03004
Author(s):  
Erika Tudisco ◽  
Claudia Vitone ◽  
Cristina Mondello ◽  
Gioacchino Viggiani ◽  
Stephen A. Hall ◽  
...  

In this experimental study the influence of fissuring orientation and confinement pressure on the mechanical behaviour of natural clays is investigated. The tested material, the scaly clay from Santa Croce di Magliano (south of Italy), is characterised by an intense network of pre-existing fissures of single orientation. Several plane strain compression tests have been conducted, under different confinement pressures (i.e., from 50 to 600 kPa), on specimens having fissures with vertical, medium and horizontal inclination. Digital Image Correlation has been used to follow the deformation processes of the specimens throughout the tests by measuring incremental shear and volumetric strain maps. The results showed a strong coupling between the total confinement and the fissure inclination, that is controlling both the onset and the development of the patterns of the localisation processes. The new results have been compared with previous ones carried out on the same material without confinement. The comparison shed light on the role of total confinement that becomes particularly relevant from certain levels of pressures and fissuring inclination.


2019 ◽  
Vol 92 ◽  
pp. 09004 ◽  
Author(s):  
Zenon Szypcio

The influence of particle breakage on soil behaviour is important from theoretical and practical perspectives. Particle breakage changes the internal energy in two ways. First, internal energy is consumed for particle crushing and second, the internal energy changes because of additional volumetric strain caused by particle crushing. These two effects may be quantified by use of Frictional State Theory. The analysed drained triaxial compression tests of Toyoura sand, gravel and Dog's Bay sand at different stress level and stress path revealed that the effect of particle breakage is a function of soil gradation, strength of soil grains, stress level and stress path.


Sign in / Sign up

Export Citation Format

Share Document