scholarly journals Formation of Silicide and Silicide-Aluminide Coatings on Molybdenum Alloy during Slurry Cementation Process: Influence of Slurry Volume

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6940
Author(s):  
Agnieszka Elżbieta Kochmańska ◽  
Aneta Jarlaczyńska ◽  
Jolanta Baranowska

New slurry cementation method was used to produce silicide and silicide-aluminide protective coatings on molybdenum alloy (TZM). The slurry cementation processes were carried out at a temperature of 1000 °C in different time intervals with the use of varied slurry mass values. The microstructure and thickness of the coatings were studied by means of scanning microscopy. Chemical composition using X-ray microanalysis and phase composition using X-ray diffraction were also investigated. Coating microhardness was determined. The obtained coatings had a multilayer structure. Phases from the Al-Si-Mo system were observed in silicide-aluminide coatings and phases from the Si-Mo system were observed in silicide coatings. The microhardness strongly depended on the phase composition of the coating. It was demonstrated that slurry mass values had an important influence on the morphology and growth kinetics of silicide-aluminide coatings. In the case of a small amount of the slurry, the deficiency of alloying elements occurring during long processes reduces growth kinetics and can lead to void formation in the structure of silicide-aluminide coatings.

2000 ◽  
Vol 104 (11) ◽  
pp. 2467-2476 ◽  
Author(s):  
H. Natter ◽  
M. Schmelzer ◽  
M.-S Löffler ◽  
C. E. Krill ◽  
A. Fitch ◽  
...  

2002 ◽  
Vol 92 (9) ◽  
pp. 5189-5195 ◽  
Author(s):  
A. S. Özcan ◽  
K. F. Ludwig ◽  
C. Lavoie ◽  
C. Cabral ◽  
J. M. E. Harper ◽  
...  

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 162
Author(s):  
Karolina Wierzbowska ◽  
Agnieszka Elżbieta Kochmańska ◽  
Paweł Kochmański

A new slurry cementation method was used to produce silicide-aluminide protective coatings on austenitic stainless steel 1.4541. The slurry cementation processes were carried out at temperatures of 800 and 1000 °C for 2 h with and without an additional oxidation process at a temperature of 1000 °C for 5 min. The microstructure and thickness of the coatings were studied by scanning electron microscopy (SEM). The intention was to produce coatings that would increase the heat resistance of the steel in a nitriding atmosphere. For this reason, the produced coatings were subjected to gas nitriding at a temperature of 550–570 °C in an atmosphere containing from 40 to 60% of ammonia. The nitriding was carried out using four time steps: 16, 51, 124, and 200 h, and microstructural observations using SEM were performed after each step. Analysis of the chemical composition of the aluminide coatings and reference sample was performed using wavelength (WDS) and energy (EDS) dispersive X-ray microanalysis, and phase analysis was carried out using X-ray diffraction (XRD). The resistance of the aluminide coatings in the nitriding atmosphere was found to depend strongly on the phase composition of the coating. The greatest increase in resistance to gas corrosion under nitriding atmosphere conditions was achieved using a manufacturing temperature of 1000 °C.


1984 ◽  
Vol 37 ◽  
Author(s):  
Betty Coulman ◽  
Haydn Chen

AbstractResults are presented for the kinetics of growth of Pd2Si interfacial layers obtained by an X-ray diffraction technique. Epitaxial Pd2Si films were grown on Si(111) substrates over a temperature range of 160–222°C. The parabolic rate law observed is in qualitative agreement with those reported by investigators using other techniques (RBS, AES, Electron Microprobe). There appear to be two kinetics regimes distinquished by diffusion paths with different activation energies (1.35±0.10 eV vs. 1.05± 0.10 eV). The presence of impurities and the detailed Pd 2Si microstructure will influence how the reacting species are transported through the lattice.


2020 ◽  
Vol 86 (6) ◽  
pp. 29-35
Author(s):  
V. P. Sirotinkin ◽  
O. V. Baranov ◽  
A. Yu. Fedotov ◽  
S. M. Barinov

The results of studying the phase composition of advanced calcium phosphates Ca10(PO4)6(OH)2, β-Ca3(PO4)2, α-Ca3(PO4)2, CaHPO4 · 2H2O, Ca8(HPO4)2(PO4)4 · 5H2O using an x-ray diffractometer with a curved position-sensitive detector are presented. Optimal experimental conditions (angular positions of the x-ray tube and detector, size of the slits, exposure time) were determined with allowance for possible formation of the impurity phases during synthesis. The construction features of diffractometers with a position-sensitive detector affecting the profile characteristics of x-ray diffraction peaks are considered. The composition for calibration of the diffractometer (a mixture of sodium acetate and yttrium oxide) was determined. Theoretical x-ray diffraction patterns for corresponding calcium phosphates are constructed on the basis of the literature data. These x-ray diffraction patterns were used to determine the phase composition of the advanced calcium phosphates. The features of advanced calcium phosphates, which should be taken into account during the phase analysis, are indicated. The powder of high-temperature form of tricalcium phosphate strongly adsorbs water from the environment. A strong texture is observed on the x-ray diffraction spectra of dicalcium phosphate dihydrate. A rather specific x-ray diffraction pattern of octacalcium phosphate pentahydrate revealed the only one strong peak at small angles. In all cases, significant deviations are observed for the recorded angular positions and relative intensity of the diffraction peaks. The results of the study of experimentally obtained mixtures of calcium phosphate are presented. It is shown that the graphic comparison of experimental x-ray diffraction spectra and pre-recorded spectra of the reference calcium phosphates and possible impurity phases is the most effective method. In this case, there is no need for calibration. When using this method, the total time for analysis of one sample is no more than 10 min.


2019 ◽  
Vol 484 (1) ◽  
pp. 41-43
Author(s):  
E. A. Malinina ◽  
V. K. Skachkova ◽  
I. V. Kozerozhets ◽  
V. V. Avdeeva ◽  
L. V. Goeva ◽  
...  

The method of nanoscaled sodium dodecahydro-closo-dodecaborate Na2[B12H12] synthesis is presented. The composite is heated to 200°C to yield the desired product, forming with the introduction of triethyl- ammonium salt [Et3NH]2[B12H12] into the silicate matrix of a sodium liquid glass. The morphology and phase composition of the synthesized sample are studied through SEM and X-ray diffraction methods, in comparison to those of a standard salt sample Na2[B12H12]. Based on the obtained data, the sample under study is an amorphous composite, on the surface of which nanoscale crystals of Na2[B12H12] form.


Author(s):  
A. Leineweber ◽  
M. Löffler ◽  
S. Martin

Abstract Cu6Sn5 intermetallic occurs in the form of differently ordered phases η, η′ and η′′. In solder joints, this intermetallic can undergo changes in composition and the state of order without or while interacting with excess Cu and excess Sn in the system, potentially giving rise to detrimental changes in the mechanical properties of the solder. In order to study such processes in fundamental detail and to get more detailed information about the metastable and stable phase equilibria, model alloys consisting of Cu3Sn + Cu6Sn5 as well as Cu6Sn5 + Sn-rich melt were heat treated. Powder x-ray diffraction and scanning electron microscopy supplemented by electron backscatter diffraction were used to investigate the structural and microstructural changes. It was shown that Sn-poor η can increase its Sn content by Cu3Sn precipitation at grain boundaries or by uptake of Sn from the Sn-rich melt. From the kinetics of the former process at 513 K and the grain size of the η phase, we obtained an interdiffusion coefficient in η of (3 ± 1) × 10−16 m2 s−1. Comparison of this value with literature data implies that this value reflects pure volume (inter)diffusion, while Cu6Sn5 growth at low temperature is typically strongly influenced by grain-boundary diffusion. These investigations also confirm that η′′ forming below a composition-dependent transus temperature gradually enriches in Sn content, confirming that Sn-poor η′′ is metastable against decomposition into Cu3Sn and more Sn-rich η or (at lower temperatures) η′. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document