scholarly journals New Insights into the Application of 3D-Printing Technology in Hernia Repair

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7092
Author(s):  
Bárbara Pérez-Köhler ◽  
Selma Benito-Martínez ◽  
Verónica Gómez-Gil ◽  
Marta Rodríguez ◽  
Gemma Pascual ◽  
...  

Abdominal hernia repair using prosthetic materials is among the surgical interventions most widely performed worldwide. These materials, or meshes, are implanted to close the hernial defect, reinforcing the abdominal muscles and reestablishing mechanical functionality of the wall. Meshes for hernia repair are made of synthetic or biological materials exhibiting multiple shapes and configurations. Despite the myriad of devices currently marketed, the search for the ideal mesh continues as, thus far, no device offers optimal tissue repair and restored mechanical performance while minimizing postoperative complications. Additive manufacturing, or 3D-printing, has great potential for biomedical applications. Over the years, different biomaterials with advanced features have been successfully manufactured via 3D-printing for the repair of hard and soft tissues. This technological improvement is of high clinical relevance and paves the way to produce next-generation devices tailored to suit each individual patient. This review focuses on the state of the art and applications of 3D-printing technology for the manufacture of synthetic meshes. We highlight the latest approaches aimed at developing improved bioactive materials (e.g., optimizing antibacterial performance, drug release, or device opacity for contrast imaging). Challenges, limitations, and future perspectives are discussed, offering a comprehensive scenario for the applicability of 3D-printing in hernia repair.

MRS Advances ◽  
2015 ◽  
Vol 1 (8) ◽  
pp. 521-526 ◽  
Author(s):  
Shannon E. Bakarich ◽  
Robert Gorkin ◽  
Sina Naficy ◽  
Reece Gately ◽  
Marc in het Panhuis ◽  
...  

ABSTRACTThe past few years have seen the introduction of a number of 3D and 4D printing techniques used to process tough hydrogel materials. The use of ‘color’ 3D printing technology where multiple inks are used in the one print allows for the production of composite materials and structures that can further enhance the mechanical performance of the printed hydrogel. This article reviews a number of 3D and 4D printing techniques for fabricating functional hydrogel based devices.


Author(s):  
Mohd Nazri Ahmad ◽  
Ahmad Afiq Tarmeze ◽  
Amir Hamzah Abdul Rasib

2020 ◽  
Vol 14 (7) ◽  
pp. 470
Author(s):  
Jarosław Kotliński ◽  
Karol Osowski ◽  
Zbigniew Kęsy ◽  
Andrzej Kęsy

2021 ◽  
pp. 2102649
Author(s):  
Sourav Chaule ◽  
Jongha Hwang ◽  
Seong‐Ji Ha ◽  
Jihun Kang ◽  
Jong‐Chul Yoon ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1106
Author(s):  
Alejandro Cortés ◽  
Xoan F. Sánchez-Romate ◽  
Alberto Jiménez-Suárez ◽  
Mónica Campo ◽  
Ali Esmaeili ◽  
...  

Electromechanical sensing devices, based on resins doped with carbon nanotubes, were developed by digital light processing (DLP) 3D printing technology in order to increase design freedom and identify new future and innovative applications. The analysis of electromechanical properties was carried out on specific sensors manufactured by DLP 3D printing technology with complex geometries: a spring, a three-column device and a footstep-sensing platform based on the three-column device. All of them show a great sensitivity of the measured electrical resistance to the applied load and high cyclic reproducibility, demonstrating their versatility and applicability to be implemented in numerous items in our daily lives or in industrial devices. Different types of carbon nanotubes—single-walled, double-walled and multi-walled CNTs (SWCNTs, DWCNTs, MWCNTs)—were used to evaluate the effect of their morphology on electrical and electromechanical performance. SWCNT- and DWCNT-doped nanocomposites presented a higher Tg compared with MWCNT-doped nanocomposites due to a lower UV light shielding effect. This phenomenon also justifies the decrease of nanocomposite Tg with the increase of CNT content in every case. The electromechanical analysis reveals that SWCNT- and DWCNT-doped nanocomposites show a higher electromechanical performance than nanocomposites doped with MWCNTs, with a slight increment of strain sensitivity in tensile conditions, but also a significant strain sensitivity gain at bending conditions.


Sign in / Sign up

Export Citation Format

Share Document