scholarly journals Influence of Impurities on the Front Velocity of Sputter Deposited Al/CuO Thermite Multilayers

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7224
Author(s):  
Altangerel Dulmaa ◽  
Diederik Depla

CuO and Al thin films were successively deposited using direct current (reactive) magnetron sputter deposition. A multilayer of five bilayers was deposited on glass, which can be ignited by heating a Ti resistive thin film. The velocity of the reaction front which propagates along the multilayer was optically determined using a high-speed camera. During the deposition of the aluminum layers, air was intentionally leaked into the vacuum chamber to introduce impurities in the film. Depositions at different impurity/metal flux ratios were performed. The front velocity reaches a value of approximately 20 m/s at low flux ratios but drops to approximately 7 m/s at flux ratios between 0.6 and 1. The drop is rather abrupt as the front velocity stays constant above flux ratios larger than 1. This behavior is explained based on the hindrance of the oxygen transport from the oxidizer (CuO) to the fuel (Al).

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 190
Author(s):  
Florian Cougnon ◽  
Mathias Kersemans ◽  
Wim Van Paepegem ◽  
Diederik Depla

Due to the low heat flux towards the substrate, magnetron sputter deposition offers the possibility to deposit thin films on heat sensitive materials such as fiber-reinforced polymers, also known as composite materials. Passive thermal probe measurements during the sputter deposition of metal layers show indeed that the temperature increase remains well below 25 °C for film thicknesses up to 600 nm. The latter thickness threshold is based on the influence of embedded metal films on the adhesion of the composite plies. Films thicker than this threshold deteriorate the mechanical integrity of the composite. The introduction of the uncured composite in the vacuum chamber strongly affects the base pressure by outgassing of impurities from the composite. The impurities affect the film properties as illustrated by their impact on the Seebeck coefficient of sputter deposited thermocouples. The restrictions to embed thin films in composites, as illustrated by both the heat flux measurements, and the study on the influence of impurities, are however not insurmountable. The possibility to use embedded thin films will be briefly demonstrated in different applications such as digital volume image correlation, thermocouples, and de-icing.


1991 ◽  
Vol 137-138 ◽  
pp. 783-786 ◽  
Author(s):  
Alan M. Myers ◽  
James R. Doyle ◽  
G. Jeff Feng ◽  
Nagi Maley ◽  
David L. Ruzic ◽  
...  

2013 ◽  
Vol 662 ◽  
pp. 413-416
Author(s):  
Yi Shen ◽  
Ruo He Yao

Al films were prepared by DC magnetron sputter deposition at different substrate temperatures. The sheet resistance of the films was measured by four point probe sheet resistance meter, and the film thickness, which was obtained by surface profiling system. The surface and cross-section morphology of the films was observed by AFM and FESEM. As a result, the resistivity of the films decreases obviously as the substrate temperature increases gradually. The higher substrate temperature is, the rougher the films surface is and the larger the grain size is.


2012 ◽  
Vol 206 (23) ◽  
pp. 4850-4854 ◽  
Author(s):  
N.D. Madsen ◽  
B.H. Christensen ◽  
S. Louring ◽  
A.N. Berthelsen ◽  
K.P. Almtoft ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document