scholarly journals Colloidal Synthesis of MoSe2/WSe2 Heterostructure Nanoflowers via Two-Step Growth

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7294
Author(s):  
Yunjeong Hwang ◽  
Naechul Shin

The ability to control the active edge sites of transition metal dichalcogenides (TMDs) is crucial for modulating their chemical activity for various electrochemical applications, including hydrogen evolution reactions. In this study, we demonstrate a colloidal synthetic method to prepare core-shell-like heterostructures composed of MoSe2 and WSe2 via a two-step sequential growth. By overgrowing WSe2 on the surface of preexisting MoSe2 nanosheet edges, MoSe2-core/WSe2-shell heterostructures were successfully obtained. Systematic comparisons of the secondary growth time and sequential order of growth suggest that the low synthetic temperature conditions allow the stable overgrowth of shells rich in WSe2 on top of the core of MoSe2 with low Gibbs formation energy. The electrochemical analysis confirms that the catalytic activity correlates to the core-shell composition variation. Our results propose a new strategy to control the edge site activity of TMD materials prepared by colloidal synthesis, which is applicable to diverse electrochemical applications.

Nanoscale ◽  
2021 ◽  
Author(s):  
Jennifer G. DiStefano ◽  
Akshay A. Murthy ◽  
Shiqiang Hao ◽  
Roberto dos Reis ◽  
Chris Wolverton ◽  
...  

Correction for ‘Topology of transition metal dichalcogenides: the case of the core–shell architecture’ by Jennifer G. DiStefano et al., Nanoscale, 2020, 12, 23897–23919, DOI: 10.1039/D0NR06660E.


Nanoscale ◽  
2020 ◽  
Vol 12 (47) ◽  
pp. 23897-23919
Author(s):  
Jennifer G. DiStefano ◽  
Akshay A. Murthy ◽  
Shiqiang Hao ◽  
Roberto dos Reis ◽  
Chris Wolverton ◽  
...  

This review paper highlights the rich opportunities of curvature and architecture in transition metal dichalcogenides for improved material design.


2019 ◽  
Vol 286 ◽  
pp. 40-48
Author(s):  
Xairo Leon ◽  
Edith Osorio ◽  
Rene Pérez-Cuapio ◽  
Carlos Bueno ◽  
Mauricio Pacio ◽  
...  

In this work, core-shell ZnO@SiO2nanoparticles (NPs) were infiltrated into a macro/meso-porous silicon (PS) structure, to study its luminescent properties. The core-shell ZnO@SiO2NPs were obtained by colloidal synthesis. The core-shell ZnO@SiO2NP was 5 nm in diameter. The macro/meso-PS structure was made in two steps: we obtained the macroporous silicon (macro-PS) layer fist and the mesoporous silicon (meso-PS) layer second. This process was conducted using different electrolyte solutions, and the change of electrolyte led to a decrease in the special charge region over the wall macro-PS layer; this allowed the building of the meso-PS layers on the walls and the bottom of the macro-PS layer. The SEM results show the cross-section of the macro/meso-PS structure with and without core-shell ZnO@SiO2NPs. These SEM images show that the core-shell ZnO@SiO2NPs that infiltrated into macro/meso-PS structure were more efficiently bonded over all the porous walls. The core-shell ZnO@SiO2PL interacted with the macro/meso-PS structure, modifying its PL intensity and controlling a shift toward a lower wavelength.


2020 ◽  
Vol 2 (9) ◽  
pp. 3882-3889
Author(s):  
Cora Moreira Da Silva ◽  
Armelle Girard ◽  
Maxime Dufond ◽  
Frédéric Fossard ◽  
Amandine Andrieux-Ledier ◽  
...  

Versatile colloidal route towards the synthesis of nanoalloys with controlled size and chemical composition, based on the correlation between the oxidation–reduction potential of metal cations in the precursors and the synthesis temperature.


2020 ◽  
Vol 312 ◽  
pp. 80-85
Author(s):  
Ilya Gavrilin

In this work, germanium nanowires (GeNWs) were fabricated by galvanostatic electrodeposition using In nanoparticles from water solutions at different temperatures. It was found that in the temperature range from 10°C to 60°C there was no significant change in the structure of GeNWs, and the average diameter was about 40 nm. The growth time of GeNWs increases linearly with increasing temperature of the electrolyte solution. However, the structure of GeNW obtained at a solution temperature of 90°C has changed. It was shown that these GeNWs have a core-shell structure: the core is a crystalline Ge phase containing In atoms, and the shell is Ge oxides (hydroxides).


2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


Sign in / Sign up

Export Citation Format

Share Document