scholarly journals Correction: Topology of transition metal dichalcogenides: the case of the core–shell architecture

Nanoscale ◽  
2021 ◽  
Author(s):  
Jennifer G. DiStefano ◽  
Akshay A. Murthy ◽  
Shiqiang Hao ◽  
Roberto dos Reis ◽  
Chris Wolverton ◽  
...  

Correction for ‘Topology of transition metal dichalcogenides: the case of the core–shell architecture’ by Jennifer G. DiStefano et al., Nanoscale, 2020, 12, 23897–23919, DOI: 10.1039/D0NR06660E.

Nanoscale ◽  
2020 ◽  
Vol 12 (47) ◽  
pp. 23897-23919
Author(s):  
Jennifer G. DiStefano ◽  
Akshay A. Murthy ◽  
Shiqiang Hao ◽  
Roberto dos Reis ◽  
Chris Wolverton ◽  
...  

This review paper highlights the rich opportunities of curvature and architecture in transition metal dichalcogenides for improved material design.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7294
Author(s):  
Yunjeong Hwang ◽  
Naechul Shin

The ability to control the active edge sites of transition metal dichalcogenides (TMDs) is crucial for modulating their chemical activity for various electrochemical applications, including hydrogen evolution reactions. In this study, we demonstrate a colloidal synthetic method to prepare core-shell-like heterostructures composed of MoSe2 and WSe2 via a two-step sequential growth. By overgrowing WSe2 on the surface of preexisting MoSe2 nanosheet edges, MoSe2-core/WSe2-shell heterostructures were successfully obtained. Systematic comparisons of the secondary growth time and sequential order of growth suggest that the low synthetic temperature conditions allow the stable overgrowth of shells rich in WSe2 on top of the core of MoSe2 with low Gibbs formation energy. The electrochemical analysis confirms that the catalytic activity correlates to the core-shell composition variation. Our results propose a new strategy to control the edge site activity of TMD materials prepared by colloidal synthesis, which is applicable to diverse electrochemical applications.


ACS Nano ◽  
2021 ◽  
Author(s):  
Miao Zhang ◽  
Martina Lihter ◽  
Tzu-Heng Chen ◽  
Michal Macha ◽  
Archith Rayabharam ◽  
...  

Author(s):  
Yoobeen Lee ◽  
Jin Won Jung ◽  
Jin Seok Lee

The reduction of intrinsic defects, including vacancies and grain boundaries, remains one of the greatest challenges to produce high-performance transition metal dichalcogenides (TMDCs) electronic systems. A deeper comprehension of the...


2021 ◽  
pp. 2100260
Author(s):  
Xi Wan ◽  
Xin Miao ◽  
Jie Yao ◽  
Shuai Wang ◽  
Feng Shao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document