scholarly journals Exciting Magnetic Dipole Mode of Split-Ring Plasmonic Nano-Resonator by Photonic Crystal Nanocavity

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7330
Author(s):  
Yingke Ji ◽  
Binbin Wang ◽  
Liang Fang ◽  
Qiang Zhao ◽  
Fajun Xiao ◽  
...  

On-chip exciting electric modes in individual plasmonic nanostructures are realized widely; nevertheless, the excitation of their magnetic counterparts is seldom reported. Here, we propose a highly efficient on-chip excitation approach of the magnetic dipole mode of an individual split-ring resonator (SRR) by integrating it onto a photonic crystal nanocavity (PCNC). A high excitation efficiency of up to 58% is realized through the resonant coupling between the modes of the SRR and PCNC. A further fine adjustment of the excited magnetic dipole mode is demonstrated by tuning the relative position and twist angle between the SRR and PCNC. Finally, a structure with a photonic crystal waveguide side-coupled with the hybrid SRR–PCNC is illustrated, which could excite the magnetic dipole mode with an in-plane coupling geometry and potentially facilitate the future device application. Our result may open a way for developing chip-integrated photonic devices employing a magnetic field component in the optical field.

2019 ◽  
Vol 27 (7) ◽  
pp. 1513-1526 ◽  
Author(s):  
Yuan Liang ◽  
Chirn Chye Boon ◽  
Chenyang Li ◽  
Xiao-Lan Tang ◽  
Herman Jalli Ng ◽  
...  

MRS Bulletin ◽  
2001 ◽  
Vol 26 (8) ◽  
pp. 627-631 ◽  
Author(s):  
Shawn-Yu Lin ◽  
J.G. Fleming ◽  
E. Chow

The drive toward miniature photonic devices has been hindered by our inability to tightly control and manipulate light. Moreover, photonics technologies are typically not based on silicon and, until recently, only indirectly benefited from the rapid advances being made in silicon processing technology. In the first part of this article, the successful fabrication of three-dimensional (3D) photonic crystals using silicon processing will be discussed. This advance has been made possible through the use of integrated-circuit (IC) fabrication technologies (e.g., very largescale integration, VLSI) and may enable the penetration of Si processing into photonics. In the second part, we describe the creation of 2D photonic-crystal slabs operating at the λ = 1.55 μm communications wavelength. This class of 2D photonic crystals is particularly promising for planar on-chip guiding, trapping, and switching of light.


2014 ◽  
Vol 1 ◽  
pp. 6 ◽  
Author(s):  
Chenglong Zhao ◽  
Jiasen Zhang ◽  
Yongmin Liu

Plasmonics, which allows for manipulation of light field beyond the fundamental diffraction limit, has recently attracted tremendous research efforts. The propagating surface plasmon polaritons (SPPs) confined on a metal-dielectric interface provide an ideal two-dimensional (2D) platform to develop subwavelength optical circuits for on-chip information processing and communication. The surface plasmon resonance of rationally designed metallic nanostructures, on the other hand, enables pronounced phase and polarization modulation for light beams travelling in three-dimensional (3D) free space. Flexible 2D and free-space propagating light manipulation can be achieved by encoding plasmonic nanostructures on a 2D surface, promising the design, fabrication and integration of the next-generation optical architectures with substantially reduced footprint. It is envisioned that the encoded plasmonic nanostructures can significantly expand available toolboxes for novel light manipulation. In this review, we presents the fundamentals, recent developments and future perspectives in this emerging field, aiming to open up new avenues to developing revolutionary photonic devices.


2016 ◽  
Vol 41 (10) ◽  
pp. 2286 ◽  
Author(s):  
Florian Vial ◽  
Katell Gadonna ◽  
Benoît Debord ◽  
Frédéric Delahaye ◽  
Foued Amrani ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4264 ◽  
Author(s):  
Sae June Park ◽  
John Cunningham

We investigate the use of finite-element simulations as a novel method for determining the dielectric property of target materials in the terahertz (THz) frequency range using split-ring resonator (SRR) sensing elements integrated into a planar Goubau line (PGL) waveguide. Five such SRRs were designed to support resonances at specific target frequencies. The origin of resonance modes was identified by investigating the electric field distribution and surface current modes in each SRR. Red-shifts were found in the resonances upon deposition of overlaid test dielectric layers that saturated for thicknesses above 10 µm. We also confirmed that the SRRs can work as independent sensors by depositing the analyte onto each individually. The relation between the permittivity of the target material and the saturated resonant frequency was obtained in each case, and was used to extract the permittivity of a test dielectric layer at six different frequencies in the range of 200–700 GHz as an example application. Our approach enables the permittivity of small volumes of analytes to be determined at a series of discrete frequencies up to ~1 THz.


Sign in / Sign up

Export Citation Format

Share Document