scholarly journals In Situ Synthesis of (M:Nb,Ta)C/Ni35 Composite Coating Cladded on 40Cr Steel

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7437
Author(s):  
Gaoqiang Jiang ◽  
Chengyun Cui ◽  
Lu Chen ◽  
Yucheng Wu ◽  
Xigui Cui

To improve the wear and corrosion resistance of the pump barrel material (40Cr steel), a (M:Nb,Ta)C/Ni35 composite cladding coating by in situ synthesis of composite carbides was conducted. The effects of ceramic micro-particles content on the phase composition, microstructure of the coating, structural characteristics of (M:Nb,Ta)C and the tribology and electrochemical corrosion behavior were systematically studied. The increase of ceramic micro-particles changed the morphology of (M:Nb,Ta)C with the size from sub-micron to micron. The (M:Nb,Ta)C dispersed along the grain boundary inhibits the growth of the grains. During friction, the spherical structure exhibited a rolling lubrication effect and the petal structure provided a stronger attachment ability to resist the shear. The corrosion occurred at the grains, exhibiting corrosion pits, in which the high content ceramic micro-particles were relatively shallow. Moreover, a few dot corrosion pits were distributed along the grain boundaries without (M:Nb,Ta)C. Therefore, to improve the corrosion resistance, a thin composite carbide coating with good wear and corrosion resistance was prepared.

Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 502 ◽  
Author(s):  
Sonia García-Rodríguez ◽  
Antonio Julio López ◽  
Victoria Bonache ◽  
Belén Torres ◽  
Joaquín Rams

This study shows that WC-12Co coatings with low porosity and high wear and corrosion resistance can be applied by high velocity oxygen-fuel (HVOF) on a low melting and highly flammable ZE41 magnesium alloy. This provides a novel and promising use of the high-energy thermal spraying technique on low temperature melting substrates. The spraying distance used was 300 mm, which is between two and three times the recommended distanced for HVOF coating with WC-12Co on steels. Despite this, the WC-12Co coatings obtained were homogeneous, crack-free, and dense. The coatings were very well adhered to the substrates and the spraying distance allowed avoiding any thermal affectation of the substrate. The thickness of the coatings was limited to 45 μm to avoid a big mass increase in the samples. The effect of the number of layers, the O2/H2 ratio and the gas transport flow in the coating was studied. The coatings reduced the wear rate of the substrate by 104 times, making them wear resistant. Electrochemical corrosion tests were conducted to study the corrosion protection of the coatings, showing that it is possible to protect the magnesium substrate for 96 h in contact with 3.5 wt.% NaCl aqueous solution.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3500 ◽  
Author(s):  
Daniel Medyński ◽  
Bartłomiej Samociuk ◽  
Andrzej Janus ◽  
Jacek Chęcmanowski

Results of a study on influence of Cr, Mo and Al on the microstructure, abrasive wear and corrosion resistance of Ni-Mn-Cu cast iron in the as-cast and heat-treated conditions are presented. Because of the chilling effect of first two elements (tendency to create hard spots), graphitising Al was added to the alloys, with the highest concentration of Cr and Mo. All castings in the as-cast condition showed an austenitic matrix, guaranteeing good machinability. Heat treatment of raw castings, consisting in annealing at 500 °C for 4 h, resulted in partial transformation of austenite. As a result the carbon-supersaturated acicular ferrite, morphologically similar to bainitic ferrite was formed. The degree of this transformation increased with increasing concentrations of Cr and Mo, which successively decreased the thermodynamic stability of austenite. A change of matrix structure made it possible to significantly increase hardness and abrasive-wear resistance of castings. The largest increment of hardness and abrasion resistance was demonstrated by the castings with the highest total concentration of Cr and Mo with an addition of 0.4% Al. Introduction of Cr and Mo also resulted in an increase of corrosion resistance. In the heat-treated specimens, increasing the concentration of Cr and Mo resulted in a successive decrease of the depth of corrosion pits, with an increase in their number at the same time. This is very favourable from the viewpoint of corrosion resistance.


Alloy Digest ◽  
1961 ◽  
Vol 10 (7) ◽  

Abstract TANTUNG G is a cast nonferrous alloy containing tantalum or columbium carbide and having wear and corrosion resistance. It is used primarily for cutting tools. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: Co-28. Producer or source: Vascoloy, Ramet Division.


Alloy Digest ◽  
2000 ◽  
Vol 49 (8) ◽  

Abstract Allegheny Ludlum Type 420 is a hardenable, straight-chromium stainless steel with wear and corrosion resistance. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: SS-801. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
2005 ◽  
Vol 54 (4) ◽  

Abstract Nirosta 4031 (Type 420) is a martensitic grade of stainless steel that is heat treatable and has wear and corrosion resistance. It is predominately used in the quenched-and-tempered condition. Typical applications are blades and shears for all types of cutting. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SS-925. Producer or source: ThyssenKrupp Nirosta GmbH.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3700
Author(s):  
Wenquan Wang ◽  
Ming Du ◽  
Xinge Zhang ◽  
Chengqun Luan ◽  
Yingtao Tian

H13 steel is often damaged by wear, erosion, and thermal fatigue. It is one of the essential methods to improve the service life of H13 steel by preparing a coating on it. Due to the advantages of high melting point, good wear, and corrosion resistance of Mo, Mo coating was fabricated on H13 steel by electro spark deposition (ESD) process in this study. The influences of the depositing parameters (deposition power, discharge frequency, and specific deposition time) on the roughness of the coating, thickness, and properties were investigated in detail. The optimized depositing parameters were obtained by comparing roughness, thickness, and crack performance of the coating. The results show that the cross-section of the coating mainly consisted of strengthening zone and transition zone. Metallurgical bonding was formed between the coating and substrate. The Mo coating mainly consisted of Fe9.7Mo0.3, Fe-Cr, FeMo, and Fe2Mo cemented carbide phases, and an amorphous phase. The Mo coating had better microhardness, wear, and corrosion resistance than substrate, which could significantly improve the service life of the H13 steel.


Sign in / Sign up

Export Citation Format

Share Document