scholarly journals Hydroxyapatite Film Coating by Er:YAG Pulsed Laser Deposition Method for the Repair of Enamel Defects

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7475
Author(s):  
Liji Chen ◽  
Shigeki Hontsu ◽  
Satoshi Komasa ◽  
Ei Yamamoto ◽  
Yoshiya Hashimoto ◽  
...  

There are treatments available for enamel demineralization or acid erosion, but they have limitations. We aimed to manufacture a device that could directly form a hydroxyapatite (HAp) film coating on the enamel with a chairside erbium-doped yttrium aluminum garnet (Er:YAG) laser using the pulsed laser deposition (PLD) method for repairing enamel defects. We used decalcified bovine enamel specimens and compacted α-tricalcium phosphate (α-TCP) as targets of Er:YAG-PLD. With irradiation, an α-TCP coating layer was immediately deposited on the specimen surface. The morphological, mechanical, and chemical characteristics of the coatings were evaluated using scanning electron microscopy (SEM), scanning probe microscopy (SPM), X-ray diffractometry (XRD), and a micro-Vickers hardness tester. Wear resistance, cell attachment of the HAp coatings, and temperature changes during the Er:YAG-PLD procedure were also observed. SEM demonstrated that the α-TCP powder turned into microparticles by irradiation. XRD peaks revealed that the coatings were almost hydrolyzed into HAp within 2 days. Micro-Vickers hardness indicated that the hardness lost by decalcification was almost recovered by the coatings. The results suggest that the Er:YAG-PLD technique is useful for repairing enamel defects and has great potential for future clinical applications.

Author(s):  
Talisha M. Haywood ◽  
Kwadwo M. Darkwa ◽  
Ram K. Gupta ◽  
Dhananjay Kumar

TiN thin films were deposited on pure titanium (99.9 %) and stainless steel (316L) substrates using the pulsed laser deposition (PLD) technique. PLD is a very versatile technique to deposit high quality films and it allows the stoichiometry transfer of a multi-component system from target to deposited film. The crystallographic orientation of the films was studied using the X-ray diffraction technique and the results showed that the films were polycrystalline with the (111) preferred orientation. The hydrophilic/hydrophobicity nature of the films was investigated using contact angle measurements and the results indicated that the TiN coated surfaces were hydrophilic (< 90°). Biocompatibility of the TiN thin films was characterized in terms of cell attachment of bone cells on the surfaces of the coatings. Human bone marrow stromal cells were cultured, seeded, stained and imaged using a fluorescent microscope. Results on the biological behavior of the TiN thin films suggest that TiN is a good biocompatible material and has great promises in biological applications.


Author(s):  
Michael P. Mallamaci ◽  
James Bentley ◽  
C. Barry Carter

Glass-oxide interfaces play important roles in developing the properties of liquid-phase sintered ceramics and glass-ceramic materials. Deposition of glasses in thin-film form on oxide substrates is a potential way to determine the properties of such interfaces directly. Pulsed-laser deposition (PLD) has been successful in growing stoichiometric thin films of multicomponent oxides. Since traditional glasses are multicomponent oxides, there is the potential for PLD to provide a unique method for growing amorphous coatings on ceramics with precise control of the glass composition. Deposition of an anorthite-based (CaAl2Si2O8) glass on single-crystal α-Al2O3 was chosen as a model system to explore the feasibility of PLD for growing glass layers, since anorthite-based glass films are commonly found in the grain boundaries and triple junctions of liquid-phase sintered α-Al2O3 ceramics.Single-crystal (0001) α-Al2O3 substrates in pre-thinned form were used for film depositions. Prethinned substrates were prepared by polishing the side intended for deposition, then dimpling and polishing the opposite side, and finally ion-milling to perforation.


1998 ◽  
Vol 08 (PR9) ◽  
pp. Pr9-261-Pr9-264
Author(s):  
M. Tyunina ◽  
J. Levoska ◽  
A. Sternberg ◽  
V. Zauls ◽  
M. Kundzinsh ◽  
...  

2001 ◽  
Vol 11 (PR11) ◽  
pp. Pr11-65-Pr11-69
Author(s):  
N. Lemée ◽  
H. Bouyanfif ◽  
J. L. Dellis ◽  
M. El Marssi ◽  
M. G. Karkut ◽  
...  

2001 ◽  
Vol 11 (PR11) ◽  
pp. Pr11-133-Pr11-137
Author(s):  
J. R. Duclère ◽  
M. Guilloux-Viry ◽  
A. Perrin ◽  
A. Dauscher ◽  
S. Weber ◽  
...  

2002 ◽  
Vol 720 ◽  
Author(s):  
Costas G. Fountzoulas ◽  
Daniel M. Potrepka ◽  
Steven C. Tidrow

AbstractFerroelectrics are multicomponent materials with a wealth of interesting and useful properties, such as piezoelectricity. The dielectric constant of the BSTO ferroelectrics can be changed by applying an electric field. Variable dielectric constant results in a change in phase velocity in the device allowing it to be tuned in real time for a particular application. The microstructure of the film influences the electronic properties which in turn influences the performance of the film. Ba0.6Sr0.4Ti1-y(A 3+, B5+)yO3 thin films, of nominal thickness of 0.65 μm, were synthesized initially at substrate temperatures of 400°C, and subsequently annealed to 750°C, on LaAlO3 (100) substrates, previously coated with LaSrCoO conductive buffer layer, using the pulsed laser deposition technique. The microstructural and physical characteristics of the postannealed thin films have been studied using x-ray diffraction, scanning electron microscopy, and nano indentation and are reported. Results of capacitance measurements are used to obtain dielectric constant and tunability in the paraelectric (T>Tc) regime.


Sign in / Sign up

Export Citation Format

Share Document