scholarly journals Investigation on the Performance of Partial Penetration Welds in Multicell Concrete Filled Steel Tubes

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7543
Author(s):  
Lian-Jin Bao ◽  
Fei-Fei Sun ◽  
Osama Mughrabi ◽  
Liu-Lian Li ◽  
Guo-Qiang Li

This paper presents an experimental and analytical investigation on the performance of partial penetration welds used to adjoin steel plates in irregular shaped multicell concrete filled steel tubes. The experimental program of this study is designed based on an actual implementation of such members as mega columns in a super high rise building in China. A total of six specimens are designed with different plate arrangements for the purpose of testing the performance of the partial penetration welds at different locations of the specimen. The designed specimens are tested under different load procedures and directions; this is achieved by placing them in vertical and slantwise manners between two loading plates which impose monotonic and cyclic actions. The failure conditions of each of the tested specimens are presented and discussed in detail and are based on the conclusions drawn from the experimental observations; the partial penetration weld at the corner of the tested specimens is found to be the most vulnerable. To facilitate large scale analysis, a finite element model constructed by the finite element analysis program ABAQUS is verified against experimental results. The evaluation of the stress at the partial penetration welded corner is carried out following an empirical procedure, which is adopted due to the complexity of the problem domain. The adopted procedure consists of two steps: the first one is to initially evaluate the stress based on an existing method in the literature, and the second one is to fit the results of the initial evaluation with the finite element model results based on parametric and regression analysis. After performing regression analysis, a formula to predict the weld stress is concluded, and the results of the proposed equation are found to be satisfactory when compared with the finite element model results.

Author(s):  
Dongxu Li ◽  
Brian Uy ◽  
Farhad Aslani ◽  
Chao Hou

Spiral welded stainless tubes are produced by helical welding of a continuous strip of stainless steel. Recently, concrete-filled spiral welded stainless steel tubes have found increasing application in the construction industry due to their ease of fabrication and aesthetic appeal. However, an in-depth understanding of the behaviour of this type of structure is still needed due to the lack of proper design guidance and insufficient experimental verification. In this paper, the mechanical performance of concrete-filled spiral welded stainless steel tubes will be numerically investigated with a commercial finite element software package, through which an experimental program can be designed properly. Specifically, the proposed finite element models take into account the effects of material and geometric nonlinearities. Moreover, the initial imperfections of stainless steel tubes and the form of helical welding will be appropriately included. Enhancement of the understanding of the analysis results can be achieved by extending results through a series of parametric studies based on the developed finite element model. Thus, the effects of various design parameters will be further evaluated by using the developed finite element model. Furthermore, for the purposes of wide application of such types of structure, the accuracy of the behaviour prediction in terms of ultimate strength based on current design codes will be studied. The authors herein compared the load capacity between the finite element analysis results and the existing codes of practice.


2013 ◽  
Vol 753-755 ◽  
pp. 1196-1200
Author(s):  
Lu Yu Huang ◽  
Yang Gao ◽  
Xia Cao

Based on the construction features of the steel structures of a type of electrical dust precipitator, a finite element model is established with large-scale finite element analysis software ANSYS, and the structure stress and displacement of the model under all sorts of loads are analyzed with the frontal solution method. The results indicate that analysis is relatively accurate, the finite element model and the analysis method is appropriate. The result can be further used for optimization design of the electrical precipitator steel structures.


2018 ◽  
Vol 251 ◽  
pp. 04061 ◽  
Author(s):  
Valeriy Telichenko ◽  
Vladimir Rimshin ◽  
Ekaterina Kuzina

In this article, a method is proposed for calculating the reinforcement of concrete ceiling slabs with carbon composite materials based on the finite element model in the computer program SCAD Office PC. This method allows the most complete and accurate representation to be obtained of the structure stress-strain state before and after reinforcement with composite materials. Therefore, it allows high-quality designing and reduces the cost conducting calculations and tests on a large scale. The design values are taken from the initial data, and include conclusions based on the results of analysis of the technical state of the structures and drawings from the calculation section of the CS (reinforced concrete structures).


1996 ◽  
Vol 429 ◽  
Author(s):  
Suman Banerjee ◽  
J. Vernon Cole ◽  
Klavs F. Jensen ◽  
A. Emami-Naeni

AbstractThis paper presents a systematic way of developing low order nonlinear models from physically- based, large scale finite element models of rapid thermal processing (RTP) systems. The low order model is extracted from transient results of the finite element model using the proper orthogonal decomposition (POD) method. Eigenfunctions obtained from the POD method are used as basis functions in spectral Galerkin expansions of partial differential equations solved by the finite element model to generate the reduced models. Simulation results demonstrate good agreement with steady state and transient data generated from the finite element model.


2012 ◽  
Vol 446-449 ◽  
pp. 949-953
Author(s):  
Ya Ni Lu ◽  
Tao Li Xiao

Special load has produced serious damage to the concrete pavement because of the great gross weight and heavy axle load, but the present specification has not mentioned this kind of load. On this occasion, Several conditions of critical load are identified through ANSYS finite element model analysis and the formula through statistical regression analysis to the bottom maximum tension stress is drawn up. Which can not only guide the concrete pavement design under the special load but also the result may be referred by the other kinds of engineering.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
B. Asgari ◽  
S. A. Osman ◽  
A. Adnan

The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.


2001 ◽  
Author(s):  
Y. W. Kwon ◽  
J. A. Lobuono

Abstract The objective of this study is to develop a finite element model of the human thorax with a protective body armor system so that the model can adequately determine the thorax’s biodynamical response from a projectile impact. The finite element model of the human thorax consists of the thoracic skeleton, heart, lungs, major arteries, major veins, trachea, and bronchi. The finite element model of the human thorax is validated by comparing the model’s results to experimental data obtained from cadavers wearing a protective body armor system undergoing a projectile impact.


Author(s):  
V. Ramamurti ◽  
D. A. Subramani ◽  
K. Sridhara

Abstract Stress analysis and determination of eigen pairs of a typical turbocharger compressor impeller have been carried out using the concept of cyclic symmetry. A simplified model treating the blade and the hub as isolated elements has also been attempted. The limitations of the simplified model have been brought out. The results of the finite element model using the cyclic symmetric approach have been discussed.


2013 ◽  
Vol 671-674 ◽  
pp. 1012-1015
Author(s):  
Zhao Ning Zhang ◽  
Ke Xing Li

Due to the environment, climate, loads and other factors, the pre-stress applied to the beam is not a constant. It is important for engineers to track the state of the pre-stress in order to ensure security of the bridge in service. To solve the problem mentioned above, the paper puts forward a new way to analyze the effective pre-stress using the displacement inversion method based on the inversion theory according to the measured vertical deflection of the bridge in service at different time. The method is a feasible way to predict the effective pre-stress of the bridge in service. Lastly, taking the pre-stressed concrete continuous rigid frame bridge for example, the effective pre-stress is analyzed by establishing the finite element model.


Sign in / Sign up

Export Citation Format

Share Document