scholarly journals In Situ Analyses of Surface-Layer Composition of CxNy Thin Films Using Methods Based on Penning Ionization Processes—Introductory Investigations

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7812
Author(s):  
Galina Grigorian ◽  
Izabela Konkol ◽  
Adam Cenian

Carbon nitride materials have received much attention due to their excellent tribological, mechanical and optical properties. It was found that these qualities depend on the N/C ratio; therefore, the possibility to control it in situ in the sputtered film is of high importance. The plasma-electron spectroscopy method based on the Penning ionization process analysis is developed here to control this ratio in CNx films produced by plasma-sputtering in a pulsed-periodic regime of glow discharge. The electron energy distribution function is determined by the means of a single Langmuir probe placed in the center of the discharge tube. The mixture N2:CH4:He was used in the process of sputtering. The applied concentrations of CH4 varied in the range of 2–8%, and He concentration was 80–90%. The gas pressure in the discharge tube used for sputtering varied between 1 and 10 Torr, and the current was between 10 and 50 mA. It was shown that the proposed method enables the extraction of information on the composition of the surface layer of the investigated film and the development of an on-line inspection, without extracting the film from the sputtering chamber.

2019 ◽  
Vol 6 (1) ◽  
pp. 34-39
Author(s):  
Daniele Paesani

Nowadays, the increasing demand for constant in-situ monitoring of clean water, wastewater and sea water requires the deployment of automated platforms capable of on-line autonomous sampling, extended unattended operation and of multi-analyte detection. The Micro Loop Injection Analyser (μLIA) system hereby presented relies on integrated additively manufactured opto-fluidic components which allow for increased performance solutions to be implemented cost-effectively and in miniaturised footprints, targeting a wide spectrum of applications which ranges from in-situ environmental monitoring and field water testing to industrial process analysis. Preliminary tests of the μLIA unit have shown good reproducibility and stability of the system and a good performance of its self-calibration routines.


Author(s):  
M.A. O’Keefe ◽  
J. Taylor ◽  
D. Owen ◽  
B. Crowley ◽  
K.H. Westmacott ◽  
...  

Remote on-line electron microscopy is rapidly becoming more available as improvements continue to be developed in the software and hardware of interfaces and networks. Scanning electron microscopes have been driven remotely across both wide and local area networks. Initial implementations with transmission electron microscopes have targeted unique facilities like an advanced analytical electron microscope, a biological 3-D IVEM and a HVEM capable of in situ materials science applications. As implementations of on-line transmission electron microscopy become more widespread, it is essential that suitable standards be developed and followed. Two such standards have been proposed for a high-level protocol language for on-line access, and we have proposed a rational graphical user interface. The user interface we present here is based on experience gained with a full-function materials science application providing users of the National Center for Electron Microscopy with remote on-line access to a 1.5MeV Kratos EM-1500 in situ high-voltage transmission electron microscope via existing wide area networks. We have developed and implemented, and are continuing to refine, a set of tools, protocols, and interfaces to run the Kratos EM-1500 on-line for collaborative research. Computer tools for capturing and manipulating real-time video signals are integrated into a standardized user interface that may be used for remote access to any transmission electron microscope equipped with a suitable control computer.


2021 ◽  
Vol 109 (4) ◽  
pp. 243-260 ◽  
Author(s):  
Yves Wittwer ◽  
Robert Eichler ◽  
Dominik Herrmann ◽  
Andreas Türler

Abstract A new setup named Fast On-line Reaction Apparatus (FORA) is presented which allows for the efficient investigation and optimization of metal carbonyl complex (MCC) formation reactions under various reaction conditions. The setup contains a 252Cf-source producing short-lived Mo, Tc, Ru and Rh isotopes at a rate of a few atoms per second by its 3% spontaneous fission decay branch. Those atoms are transformed within FORA in-situ into volatile metal carbonyl complexes (MCCs) by using CO-containing carrier gases. Here, the design, operation and performance of FORA is discussed, revealing it as a suitable setup for performing single-atom chemistry studies. The influence of various gas-additives, such as CO2, CH4, H2, Ar, O2, H2O and ambient air, on the formation and transport of MCCs was investigated. O2, H2O and air were found to harm the formation and transport of MCCs in FORA, with H2O being the most severe. An exception is Tc, for which about 130 ppmv of H2O caused an increased production and transport of volatile compounds. The other gas-additives were not influencing the formation and transport efficiency of MCCs. Using an older setup called Miss Piggy based on a similar working principle as FORA, it was additionally investigated if gas-additives are mostly affecting the formation or only the transport stability of MCCs. It was found that mostly formation is impacted, as MCCs appear to be much less sensitive to reacting with gas-additives in comparison to the bare Mo, Tc, Ru and Rh atoms.


Author(s):  
Sheila Shahidi ◽  
Sanaz Dalalsharifi ◽  
Mahmood Ghoranneviss ◽  
Rattanaphol Mongkholrattanasit

2003 ◽  
Vol 75 (9) ◽  
pp. 2166-2171 ◽  
Author(s):  
Nicolae Leopold ◽  
Michael Haberkorn ◽  
Thomas Laurell ◽  
Johan Nilsson ◽  
Josefa R. Baena ◽  
...  

1994 ◽  
Vol 347 ◽  
Author(s):  
J.Ch. Bolomey ◽  
G. Cottard ◽  
P. Berthaud ◽  
A. Lemaitre ◽  
J. F. Portala

ABSTRACTMicrowave multiport sensors have been shown to provide some unique capabilities to achieve real-time testing of products conveyed at high speed. In many applications, quantitative measurements of physical quantities such as moisture content, density, etc… are required, either to guarantee reliable production or to optimally control a fabrication/transformation process. In this paper, different ways of extracting such physical quantities from microwave measurements performed by multiport sensors are presented. Model approaches are used, based on polynomial expansions of the physical quantities to be measured as a function of the microwave amplitude and phase data. Calibration procedures have been investigated for both paper and wood material samples. Comparisons between in-situ, microwave and conventional, measurements are analysed.


Sign in / Sign up

Export Citation Format

Share Document