scholarly journals Hydrophilic and Conductive Carbon Nanotube Fibers for High-Performance Lithium-Ion Batteries

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7822
Author(s):  
Nayoung Ku ◽  
Jaeyeong Cheon ◽  
Kyunbae Lee ◽  
Yeonsu Jung ◽  
Seog-Young Yoon ◽  
...  

Carbon nanotube fiber (CNTF) is a highly conductive and porous platform to grow active materials of lithium-ion batteries (LIB). Here, we prepared SnO2@CNTF based on sulfonic acid-functionalized CNTF to be used in LIB anodes without binder, conductive agent, and current collector. The SnO2 nanoparticles were grown on the CNTF in an aqueous system without a hydrothermal method. The functionalized CNTF exhibited higher conductivity and effective water infiltration compared to the raw CNTF. Due to the enhanced water infiltration, the functionalized CNTF became SnO2@CNTF with an ideal core–shell structure coated with a thin SnO2 layer. The specific capacity and rate capability of SnO2@-functionalized CNTF were superior to those of SnO2@raw CNTF. Since the SnO2@CNTF-based anode was free of a binder, conductive agent, and current collector, the specific capacity of the anode studied in this work was higher than that of conventional anodes.

2021 ◽  
Vol 291 ◽  
pp. 129508
Author(s):  
Xiangnan Yu ◽  
Yang Jiang ◽  
Xiao Yang ◽  
Zhaoheng Cai ◽  
Yang Hua ◽  
...  

2021 ◽  
pp. 2150031
Author(s):  
Hai Li ◽  
Chunxiang Lu

As anode material for lithium-ion batteries, graphite has the disadvantage of relatively low specific capacity. In this work, a simple yet effective strategy to overcome the disadvantages by using a composite of flake graphite (FG) and small-sized graphene (SG) has been developed. The FG/SG composite prepared by dispersing FG and SG (90:10 w/w) in ethanol and drying delivers much higher specific capacity than that of individual component except for improved rate capability. More surprisingly, FG/SG composite delivers higher reversible capacity than its theoretical value calculated according to the theoretical capacities of graphite and graphene. Therefore, a synergistic effect between FG and SG in lithium storage is clearly discovered. To explain it, we propose a model that abundant nanoscopic cavities were formed due to physical adhesion between FG and SG and could accommodate extra lithium.


Nanoscale ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 5812-5816 ◽  
Author(s):  
Jinyun Liu ◽  
Xirong Lin ◽  
Tianli Han ◽  
Qianqian Lu ◽  
Jiawei Long ◽  
...  

Metallic germanium (Ge) as the anode can deliver a high specific capacity and high rate capability in lithium ion batteries.


RSC Advances ◽  
2016 ◽  
Vol 6 (109) ◽  
pp. 107768-107775 ◽  
Author(s):  
Yew Von Lim ◽  
Zhi Xiang Huang ◽  
Ye Wang ◽  
Fei Hu Du ◽  
Jun Zhang ◽  
...  

Tungsten disulfide nanoflakes grown on plasma activated three dimensional graphene networks. The work features a simple growth of TMDs-based LIBs anode materials that has excellent rate capability, high specific capacity and long cycling stability.


2020 ◽  
Vol 8 (37) ◽  
pp. 19444-19453 ◽  
Author(s):  
Ke Wen Mu ◽  
Kai Xi Liu ◽  
Zhi Yong Wang ◽  
Shahid Zanman ◽  
Yan Hong Yin ◽  
...  

Surface/interface modification is developed to tune the electrolyte wettability of a carbon nanotube current collector for controlling the lithium ion diffusion and achieving high voltage foldable lithium-ion batteries.


2014 ◽  
Vol 2 (46) ◽  
pp. 19670-19677 ◽  
Author(s):  
Junyoung Mun ◽  
Jin-Hwan Park ◽  
Wonchang Choi ◽  
Anass Benayad ◽  
Jun-Ho Park ◽  
...  

For high rate capability and energy density of lithium ion batteries, over-lithiated layered cathodes coated by multiwall carbon nanotube were prepared by a novel dry method without decay in the structure.


2020 ◽  
Vol 12 (10) ◽  
pp. 1465-1468
Author(s):  
Jin-Ju Bae ◽  
Ji-Woong Shin ◽  
Seong-Jae Kim ◽  
Tae-Whan Hong

Electrodes were fabricated using a perforated aluminum current collector and a standard aluminum foil, and the relationship between the electrochemical performance of the battery and the current collector was investigated. The perforated aluminum foil improved the contact characteristics between the cathode materials particles and the current collector. Also, electrochemical performance indicators such discharge capacity and rate characteristics were improved due to the increased adhesion of the electrode using the perforated current collector.


2017 ◽  
Vol 8 ◽  
pp. 1297-1306 ◽  
Author(s):  
Jin Zhang ◽  
Yibing Cai ◽  
Xuebin Hou ◽  
Xiaofei Song ◽  
Pengfei Lv ◽  
...  

Titanium dioxide (TiO2) nanofibers have been widely applied in various fields including photocatalysis, energy storage and solar cells due to the advantages of low cost, high abundance and nontoxicity. However, the low conductivity of ions and bulk electrons hinder its rapid development in lithium-ion batteries (LIB). In order to improve the electrochemical performances of TiO2 nanomaterials as anode for LIB, hierarchically porous TiO2 nanofibers with different tetrabutyl titanate (TBT)/paraffin oil ratios were prepared as anode for LIB via a versatile single-nozzle microemulsion electrospinning (ME-ES) method followed by calcining. The experimental results indicated that TiO2 nanofibers with the higher TBT/paraffin oil ratio demonstrated more axially aligned channels and a larger specific surface area. Furthermore, they presented superior lithium-ion storage properties in terms of specific capacity, rate capability and cycling performance compared with solid TiO2 nanofibers for LIB. The initial discharge and charge capacity of porous TiO2 nanofibers with a TBT/paraffin oil ratio of 2.25 reached up to 634.72 and 390.42 mAh·g−1, thus resulting in a coulombic efficiency of 61.51%; and the discharge capacity maintained 264.56 mAh·g−1 after 100 cycles, which was much higher than that of solid TiO2 nanofibers. TiO2 nanofibers with TBT/paraffin oil ratio of 2.25 still obtained a high reversible capacity of 204.53 mAh·g−1 when current density returned back to 40 mA·g−1 after 60 cycles at increasing stepwise current density from 40 mA·g−1 to 800 mA·g−1. Herein, hierarchically porous TiO2 nanofibers have the potential to be applied as anode for lithium-ion batteries in practical applications.


Sign in / Sign up

Export Citation Format

Share Document