scholarly journals In Situ Observation of Liquid Solder Alloys and Solid Substrate Reactions Using High-Voltage Transmission Electron Microscopy

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 510
Author(s):  
Xin F. Tan ◽  
Flora Somidin ◽  
Stuart D. McDonald ◽  
Michael J. Bermingham ◽  
Hiroshi Maeno ◽  
...  

The complex reaction between liquid solder alloys and solid substrates has been studied ex-situ in a few studies, utilizing creative setups to “freeze” the reactions at different stages during the reflow soldering process. However, full understanding of the dynamics of the process is difficult due to the lack of direct observation at micro- and nano-meter resolutions. In this study, high voltage transmission electron microscopy (HV-TEM) is employed to observe the morphological changes that occur in Cu6Sn5 between a Sn-3.0 wt%Ag-0.5 wt%Cu (SAC305) solder alloy and a Cu substrate in situ at temperatures above the solidus of the alloy. This enables the continuous surveillance of rapid grain boundary movements of Cu6Sn5 during soldering and increases the fundamental understanding of reaction mechanisms in solder solid/liquid interfaces.

Author(s):  
Nobuo Tanaka ◽  
Takeshi Fujita ◽  
Yoshimasa Takahashi ◽  
Jun Yamasaki ◽  
Kazuyoshi Murata ◽  
...  

A new environmental high-voltage transmission electron microscope (E-HVEM) was developed by Nagoya University in collaboration with JEOL Ltd. An open-type environmental cell was employed to enable in-situ observations of chemical reactions on catalyst particles as well as mechanical deformation in gaseous conditions. One of the reasons for success was the application of high-voltage transmission electron microscopy to environmental (in-situ) observations in the gas atmosphere because of high transmission of electrons through gas layers and thick samples. Knock-on damages to samples by high-energy electrons were carefully considered. In this paper, we describe the detailed design of the E-HVEM, recent developments and various applications. This article is part of a discussion meeting issue ‘Dynamic in situ microscopy relating structure and function'.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


2007 ◽  
Vol 1026 ◽  
Author(s):  
Pascale Bayle-Guillemaud ◽  
Aurelien Masseboeuf ◽  
Fabien Cheynis ◽  
Jean-Christophe Toussaint ◽  
Olivier Fruchart ◽  
...  

AbstractThis paper presents investigations of magnetization configuration evolution during in-situ magnetic processes in materials exhibiting planar and perpendicular magnetic anisotropy. Transmission electron microscopy has been used to perform magnetic imaging. Fresnel contrasts in Lorentz Transmission Electron Microscopy (LTEM) and phase retrieval methods such as Transport of Intensity Equation (TIE) solving or electron holography have been implemented. These techniques are sensitive to magnetic induction perpendicular to the electron beam and can give access to a spatially resolved (resolution better than 10 nm) mapping of magnetic induction distribution and could be extended to dynamical studies during in-situ observation. Thin foils of FePd alloys with a strong perpendicular magnetic anisotropy (PMA) and self-assembled Fe dots are presented. Both are studied during magnetization processes exhibiting the capacities of in-situ magnetic imaging in a TEM.


1993 ◽  
Vol 311 ◽  
Author(s):  
Robert Sinclair ◽  
Toyohiko J. Konno

ABSTRACTWe have studied the reactions at metal-metalloid interfaces using high resolution transmission electron microscopy, including in situ observation, and differential scanning calorimetry. There is contrasting behavior depending on the affinity for interaction or segregation. For reactive systems, compound formation ultimately results, but this can be preceded by solidstate amorphization. For non-reactive systems, crystallization of the metalloid is often achieved with nucleation and growth mediated by the metal phase.


Sign in / Sign up

Export Citation Format

Share Document