scholarly journals Dynamic Responses of Blast-Loaded Shallow Buried Concrete Arches Strengthened with BFRP Bars

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 535
Author(s):  
Jianqin Wu ◽  
Jiannan Zhou ◽  
Ying Xu ◽  
Xinli Kong ◽  
Peng Wang ◽  
...  

This paper proposes a prefabricated basalt fiber reinforced polymer (BFRP) bars reinforcement of a concrete arch structure with superior performance in the field of protection engineering. To study the anti-blast performance of the shallow-buried BFRP bars concrete arch (BBCA), a multi-parameter comparative analysis was conducted employing the LS-DYNA numerical method, which was verified by the results of the field explosion experiments. By analyzing the pressure, displacement, acceleration of the arch, and the strain of the BFRP bars, the dynamic response of the arch was obtained. This study showed that BFRP bars could significantly optimize the dynamic responses of blast-loaded concrete arches. The damage of exploded BBCA was divided into five levels: no damage, slight damage, obvious damage, severe damage, and collapse. BFRP bars could effectively mitigate the degree of damage of shallow-buried underground protective arch structures under the explosive loads. According to the research results, it was feasible for BFRP bars to be used in the construction of shallow buried concrete protective arch structures, especially in the coastal environments.

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1898
Author(s):  
Marek Urbański

A new type of HFRP hybrid bars (hybrid fiber reinforced polymer) was introduced to increase the rigidity of FRP reinforcement, which was a basic drawback of the FRP bars used so far. Compared to the BFRP (basalt fiber reinforced polymer) bars, modification has been introduced in HFRP bars consisting of swapping basalt fibers with carbon fibers. One of the most important mechanical properties of FRP bars is compressive strength, which determines the scope of reinforcement in compressed reinforced concrete elements (e.g., column). The compression properties of FRP bars are currently ignored in the standards (ACI, CSA). The article presents compression properties for HFRP bars based on the developed compression test method. Thirty HFRP bars were tested for comparison with previously tested BFRP bars. All bars had a nominal diameter of 8 mm and their nonanchored (free) length varied from 50 to 220 mm. Test results showed that the ultimate compressive strength of nonbuckled HFRP bars as a result of axial compression is about 46% of the ultimate strength. In addition, the modulus of elasticity under compression does not change significantly compared to the modulus of elasticity under tension. A linear correlation of buckling load strength was proposed depending on the free length of HFRP bars.


2011 ◽  
Vol 332-334 ◽  
pp. 1937-1940 ◽  
Author(s):  
Wei Wei Hu ◽  
Hua Wu Liu ◽  
Dang Feng Zhao ◽  
Zong Bin Yang

Basalt fiber is a novel high-performance inorganic material, recently has been well received as a reinforcement in China. However, the applications in civil engineering have been rather limited. The chemical compositions, the characteristics of basalt fibers, and the typical products of basalt, including chopped yarn of basalt fiber, basalt fiber geo-textiles and basalt fiber reinforced polymer, were introduced.The advantages of basalt fibers as a reinforcement of concrete were explored in comparison with the commonly used reinforcing fibers, which indicates that basalt fiber is the most promising reinforcement material for concrete and will significantly benefit civil construction industries in the future.


2018 ◽  
Vol 765 ◽  
pp. 355-360 ◽  
Author(s):  
Sakol Suon ◽  
Shahzad Saleem ◽  
Amorn Pimanmas

This paper presents an experimental study on the compressive behavior of circular concrete columns confined by a new class of composite materials originated from basalt rock, Basalt Fiber Reinforced Polymer (BFRP). The primary objective of this study is to observe the compressive behavior of BFRP-confined cylindrical concrete column specimens under the effect of different number of layers of basalt fiber as a study parameter (3, 6, and 9 layers). For this purpose, 8 small scale circular concrete specimens with no internal steel reinforcement were tested under monotonic axial compression to failure. The results of BFRP-confined concrete specimens of this study showed a bilinear stress-strain response with two ascending branches. Consequently, the performance of confined columns was improved as the number of BFRP layer was increased, in which all the specimens exhibited ductile behavior before failure with significant strength enhancement. The experimental results indicate the well-performing of basalt fiber in improving the concrete compression behavior with an increase in number of FRP layers.


2016 ◽  
Vol 51 (9) ◽  
pp. 1275-1284 ◽  
Author(s):  
Jianzhe Shi ◽  
Xin Wang ◽  
Huang Huang ◽  
Zhishen Wu

Relaxation is a key factor that controls the application of prestressing fiber-reinforced polymer tendons. This paper focuses on the evaluation of the relaxation behavior of newly developed basalt fiber-reinforced polymer tendons through an approach considering anchorage slippage. A series of relaxation tests on basalt fiber-reinforced polymer tendons subjected to three levels of initial stresses (0.4 fu, 0.5 fu, and 0.6 fu, where fu = ultimate strength) were conducted using a specially designed test setup that eliminates the impact of slippage at the anchor zone. An additional group of tests was conducted to validate the enhancement effect of pretension on the relaxation behavior. The relaxation rates at one million hours were predicted based on experimental fitting. Finally, the relaxation rates at 1000 h were predicted using the correlation between the relaxation and creep and were validated with the experimental relaxation rates. The results demonstrate the effectiveness of the proposed setup in measuring the relaxation loss of specimens and reveal that the relaxation rates of untreated basalt fiber-reinforced polymer tendons at 1000 h are 4.2%, 5.3%, and 6.4% at 0.4 fu, 0.5 fu, and 0.6 fu, respectively. Pretension treatment performs effective in relaxation loss controlling. BFRP tendons are recommended to be applied at an initial stress of 0.5 fu after pretension treatment, with one-million-hour relaxation rate equal to 6.7%. Furthermore, the relaxation rate at 1000 h can be predicted accurately based on the creep behavior. The conclusions of this study can provide guidance for the prestressing applications of basalt fiber-reinforced polymer tendons.


Basalt fibre reinforced polymer composite is a newly versatile material that has good potential to be used in many applications due to its high specific modulus and strength properties. This paper is aimed to evaluate the response and properties of BFRP composite when it is subjected to low-velocity impact loading. The BFRP laminates were fabricated using vacuum bagging method. The effects of 5, 10 and 15wt% nanosilica particles on density, impact load and energy absorbed were investigated using a drop weight impact test. The damage characteristics of the samples were examined using an optical microscope. The addition of 15wt% nanosilica into Basalt fiber reinforced polymer composite significantly improved the energy absorption properties of the specimens. This suggests that the nanomodified BFRP composite has better damage resistance properties when compared to the pure system.


Sign in / Sign up

Export Citation Format

Share Document