scholarly journals Compressive Strength of Modified FRP Hybrid Bars

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1898
Author(s):  
Marek Urbański

A new type of HFRP hybrid bars (hybrid fiber reinforced polymer) was introduced to increase the rigidity of FRP reinforcement, which was a basic drawback of the FRP bars used so far. Compared to the BFRP (basalt fiber reinforced polymer) bars, modification has been introduced in HFRP bars consisting of swapping basalt fibers with carbon fibers. One of the most important mechanical properties of FRP bars is compressive strength, which determines the scope of reinforcement in compressed reinforced concrete elements (e.g., column). The compression properties of FRP bars are currently ignored in the standards (ACI, CSA). The article presents compression properties for HFRP bars based on the developed compression test method. Thirty HFRP bars were tested for comparison with previously tested BFRP bars. All bars had a nominal diameter of 8 mm and their nonanchored (free) length varied from 50 to 220 mm. Test results showed that the ultimate compressive strength of nonbuckled HFRP bars as a result of axial compression is about 46% of the ultimate strength. In addition, the modulus of elasticity under compression does not change significantly compared to the modulus of elasticity under tension. A linear correlation of buckling load strength was proposed depending on the free length of HFRP bars.

2019 ◽  
Vol 265 ◽  
pp. 05011
Author(s):  
Marta Kosior-Kazberuk

The fiber reinforced polymer (FRP) bars have become a useful substitute for conventional reinforcement in civil engineering structures for which load capacity and resistance to environmental influences are required. They are often used in concrete structural elements exposed to strong environmental aggression, such as foundations, breakwaters and other seaside structures, road structures and tanks. The basalt fiber-reinforced polymer (BFRP) is the most recently FRP composite, appearing within the last decade. Due to their mechanical properties different from steel bars, such as higher tensile strength and lower Young's modulus, BFRP bars are predestined for use in structures for which the ultimate limit state is rather decisive than serviceability limit state. Experimental tests were carried out to assess the influence of static long-term loads and cyclic freezing/thawing on the behaviour of concrete model beams with non-metallic reinforcement. The bars made of basalt fiber reinforced polymer (BFRP) and hybrid (basalt and carbon) fiber reinforced polymer (HFRP) were used as non-metallic reinforcement. The mechanical properties of both types of bars were also determined.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 161
Author(s):  
Hui Huang ◽  
Jie Lian ◽  
Jiaxing Li ◽  
Bin Jia ◽  
Dong Meng ◽  
...  

Fiber-reinforced polymer (FRP) bars are one of the promising alternatives for steel bars used in concrete structures under corrosion or non-magnetic environments due to the unique physical properties of FRP materials. When compared with steel bars, FRP bars are difficult to be spliced in field application due to their anisotropy and low shear and compressive strengths. In view of this, the paper presents a new non-metallic connection system (i.e., resin-filled glass fiber-reinforced polymer (GFRP) pipe connection system) for the butt splicing of FRP bars. With the proposed connection system and a simplified trilinear interfacial bond-slip model, a set of design formulas were derived based on the requirement that the proposed connection system should provide a load transfer capacity beyond the tensile capacity of the spliced FRP bars (i.e., to fulfill the high tensile strength of FRP materials). Besides, considering the fabrication error-induced load transfer capacity reduction of the connection system in field application, a correction factor was introduced in the paper to compensate for the reduced load transfer capacity by increasing the FRP bar anchorage length. At last, to estimate the effectiveness of the proposed connection system and the derived design formulas, nine specimens were fabricated with a kind of commercially available basalt fiber-reinforced polymer (BFRP) bars and the designed connection system and tested under unidirectional tension to study their tensile performance. With the comparison between the tested and theoretical results, the effectiveness of the proposed connection system and the derived design formulas are verified.


Author(s):  
Jordan Carter ◽  
Aikaterini Genikomsou

<p>Fiber-reinforced polymer (FRP) bars can replace conventional steel reinforcing rebars to prevent from corrosion in reinforced concrete structures exposed to highly corrosive environments. In this contribution, three tested concrete beams reinforced with BFRP (Basalt Fiber Reinforced Polymer) bars are analyzed using three-dimensional finite element methods. In the numerical analyses, concrete is modeled as nonlinear using plasticity and damage principles, while BFRP is modeled as linear elastic material. The main focus of this research is to present the calibration process that should take place prior to any parametric studies. This calibration suggests that the concrete model should be regularized using a characteristic length and material post-yield fracture energies in both tension and compression to provide mesh-size independent results. The numerical results are compared to the test results with regard to failure load and cracking.</p>


2008 ◽  
Vol 35 (3) ◽  
pp. 312-320 ◽  
Author(s):  
A. Zaidi ◽  
R. Masmoudi

The difference between the transverse coefficients of thermal expansion of fiber reinforced polymer (FRP) bars and concrete generates radial pressure at the FRP bar – concrete interface, which induces tensile stresses within the concrete under temperature increase and, eventually, failure of the concrete cover if the confining action of concrete is insufficient. This paper presents the results of an experimental study to investigate the thermal effect on the behaviour of FRP bars and concrete cover, using concrete slab specimens reinforced with glass FRP bars and subjected to thermal loading from –30 to +80 °C. The experimental results show that failure of concrete cover was produced at temperatures varying between +50 and +60 °C for slabs having a ratio of concrete cover thickness to FRP bar diameter (c/db) less than or equal to 1.4. A ratio of c/db greater than or equal to 1.6 seems to be sufficient to avoid splitting failure of concrete cover for concrete slabs subjected to high temperatures up to +80 °C. Also, the first cracks appear in concrete at the FRP bar – concrete interface at temperatures around +40 °C. Comparison between experimental and analytical results in terms of thermal loads and thermal strains is presented.


2016 ◽  
Vol 36 (6) ◽  
pp. 464-475 ◽  
Author(s):  
Minkwan Ju ◽  
Gitae Park ◽  
Sangyun Lee ◽  
Cheolwoo Park

In this study, we experimentally investigated the bond performance of a glass fiber-reinforced polymer hybrid bar with a core section comprising a deformed steel bar and a sand coating. The glass fiber-reinforced polymer and deformed steel hybrid bar (glass fiber-reinforced polymer hybrid bar) can contribute to longer durability and better serviceability of reinforced concrete members because of the increased modulus of elasticity provided by the deformed steel bar. Uniaxial tensile tests in compliance with ASTM D 3916 showed that the modulus of elasticity of the glass fiber-reinforced polymer hybrid bar was enhanced up to three times. For the bond test, a total of 30 specimens with various sand-coating and surface design parameters such as the size of the sand particles (0.6 mm and 0.3 mm), sand-coating type (partially or completely), number of strands of fiber ribs (6 and 10), and pitch space (11.4 mm to 29.1 mm) of the fiber ribs were tested. The completely sand-coated glass fiber-reinforced polymer hybrid bar exhibited a higher bond strength (90.5%) than the deformed steel bar and a reasonable mode of failure in concrete splitting. A modification parameter to the Eligehausen, Popov, and Bertero (BPE) model is suggested based on the representative experimental tests. The bond stress–slip behavior suggested by the modified BPE model in this study was in reasonable agreement with the experimental results.


2018 ◽  
Vol 765 ◽  
pp. 355-360 ◽  
Author(s):  
Sakol Suon ◽  
Shahzad Saleem ◽  
Amorn Pimanmas

This paper presents an experimental study on the compressive behavior of circular concrete columns confined by a new class of composite materials originated from basalt rock, Basalt Fiber Reinforced Polymer (BFRP). The primary objective of this study is to observe the compressive behavior of BFRP-confined cylindrical concrete column specimens under the effect of different number of layers of basalt fiber as a study parameter (3, 6, and 9 layers). For this purpose, 8 small scale circular concrete specimens with no internal steel reinforcement were tested under monotonic axial compression to failure. The results of BFRP-confined concrete specimens of this study showed a bilinear stress-strain response with two ascending branches. Consequently, the performance of confined columns was improved as the number of BFRP layer was increased, in which all the specimens exhibited ductile behavior before failure with significant strength enhancement. The experimental results indicate the well-performing of basalt fiber in improving the concrete compression behavior with an increase in number of FRP layers.


Sign in / Sign up

Export Citation Format

Share Document