scholarly journals Review of Rotor Balancing Methods

Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 89
Author(s):  
Liqing Li ◽  
Shuqian Cao ◽  
Jing Li ◽  
Rimin Nie ◽  
Lanlan Hou

This review is dedicated to balancing methods that are used to solve the rotor-balancing problem. To ensure a stable operation over an operating speed range, it is necessary to balance a rotor. The traditional methods, including the influence coefficient method (ICM) and the modal balancing method (MBM) are introduced, and the research progress, operation steps, advantages and disadvantages of these methods are elaborated. The classification of new balancing methods is reviewed. Readers are expected to obtain an overview of the research progress of existing balancing methods and the directions for future studies.

1972 ◽  
Vol 94 (1) ◽  
pp. 148-158 ◽  
Author(s):  
J. M. Tessarzik ◽  
R. H. Badgley ◽  
W. J. Anderson

A test program was conducted to confirm experimentally the validity of the exact point-speed influence coefficient method for balancing rotating machinery, and to assess the practical aspects of applying the method to flexible rotors. Testing was performed with a machine having a 41-in. long, 126-lb rotor. The rotor was operated over a speed range encompassing three rotor-bearing system critical speeds: two “rigid-body” criticals and one flexural critical. Rotor damping at the flexural critical was very low due to the journal bearings being located at the nodal points of the shaft. The balancing method was evaluated for three different conditions of initial rotor unbalance. The method was found to be effective and practical. Safe passage through all the critical speeds was obtained after a reasonable number of balancing runs. Success of the balancing method was, in large part, due to the accuracy of the instrumentation system used to obtain phase-angle measurements during the balancing procedure.


1976 ◽  
Vol 98 (3) ◽  
pp. 988-998 ◽  
Author(s):  
J. M. Tessarzik ◽  
R. H. Badgley ◽  
D. P. Fleming

Experimental tests have been conducted to further demonstrate the ability of the Influence Coefficient Method to achieve precise balance of flexible rotors of virtually any design for operation through virtually any speed range. Four distinct practical aspects of flexible-rotor balancing were investigated in the present work: (1) Balancing for operation through multiple bending critical speeds; (2) balancing of rotors mounted in both rigid and flexible bearing supports, the latter having significantly different stiffnesses in the horizontal and vertical directions so as to cause severe ellipticity in the vibration orbits; (3) balancing of rotors with various amounts of measured vibration response information (e.g., numbers of vibration data sets, and numbers and types of vibration sensors), and with different number of correction planes; (4) balancing of rotors with different (though arbitrary) initial unbalance configurations. Tests were made on a laboratory quality machine having a 122-cm (48-in.) long rotor weighing 50 kg (110 lb) and covering a speed range up to 18,000 rpm. The balancing method was found in every instance to be effective, practical, and economical, permitting safe rotor operation over the full speed range covering four rotor bending critical speeds.


Author(s):  
José A. Méndez-Adriani

Abstract This article develops a more efficient technique for the balancing of the overhung rigid rotor, which is a variation of the exact influence coefficient method, that gives directly the correction weights for both balancing planes. During the calibration process, one trial weight is used for the second run and, to reduce the cross effect, only one trial weight to form a couple is used for the third run, improving the field balancing method for maintenance works.


2011 ◽  
Vol 105-107 ◽  
pp. 56-61 ◽  
Author(s):  
Xing Xing Wang ◽  
Guo An Yang ◽  
Ya Jun Fan

On the basis of the rotor dynamic balancing theory, the rotor balancing least squares influence coefficient method has been discussed in detail in this paper. In order to solve the problem that the residual vibration in some of the measuring point and the balancing weight are comparatively large in the balance process with least squares influence coefficient method, particle swarm optimization algorithm with cross-factor, which is an improved swarm intelligence algorithm, is introduced into rotor balancing least squares influence coefficient method. Theoretical analysis and numerical examples show that the algorithm has a good convergence, with reducing the balancing weight and residual vibration effectively compared with basic least squares influence coefficient method. The result can achieve better balance effect in the rotor balancing process.


Author(s):  
Costin Untaroiu ◽  
Paul Allaire

Rotor balancing is a requirement for the smooth operation of high-speed rotating machinery. In field balancing, minimization of the residual vibrations at important locations/speeds under practical constraints is usually a challenging task. In this paper, the generalized minmax coefficient influence method is formulated as an optimization problem with flexible objective functions and constraints. The optimization problem is cast in a Linear Matrix Inequality (LMI) form and a balancing code is developed to solve it. Two balancing examples are run to verify the efficiency and flexibility of the proposed method. Over the existing methods, current method is more flexible for the various requirements encountered in field balancing and can be solved accurate with current mathematical software.


Author(s):  
D. Wiese ◽  
M. Breitwieser

Abstract The following paper presents a method for balancing simple flexible rotors with the help of influence coefficients obtained by hammer beat. The method permits time savings of approx. 50% compared to the conventional influence coefficient method. Initial positive results obtained on a flexible roll are also presented.


Author(s):  
Yunjie Miao ◽  
Feng Gao ◽  
Dalei Pan

A hybrid lower extremity exoskeleton SJTU-EX which adopts a scissor mechanism as the hip and knee flexion/extension joint is proposed in Shanghai Jiao Tong University to augment load carrying for walking. The load supporting capabilities of a traditional serially connected mechanism and the scissor mechanism are compared in detail. The kinematic influence coefficient method of the kinematic and dynamic analysis is applied in the length optimization of the scissor sides to minimize the transmitting errors between the input and output motions in walking and the load capacities of different scissor mechanisms are illustrated. The optimization results are then verified by the walking simulations. Finally, the prototype of SJTU-EX is implemented with several improvements to enhance the working performances.


Sign in / Sign up

Export Citation Format

Share Document