scholarly journals Adaptive Direct Teaching Control with Variable Load of the Lower Limb Rehabilitation Robot (LLR-II)

Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 142
Author(s):  
Xincheng Wang ◽  
Hongbo Wang ◽  
Xinyu Hu ◽  
Yu Tian ◽  
Musong Lin ◽  
...  

Most lower limb rehabilitation robots use fixed training trajectories and lack participation of physiotherapists. In addition, there is a lack of attention on combining direct teaching function with rehabilitation robots, which enables physiotherapists to plan trajectories directly. In this paper, an adaptive direct teaching function with variable load that can be applied to the sitting/lying lower limb rehabilitation robot-II (LLR-II) is proposed. First, the structural design and electrical system of LLR-II are introduced. The dynamic equation of LLR-II considering joint flexibility is derived and analyzed. Then, the impact of joint flexibility on LLR-II is reduced by introducing the intermediate input variables. Based on this, the control law of the dragging teaching stage and the replay stage in the direct teaching function with variable load is designed and the adaptive control strategy eliminates the influence of different patients. In addition, the control law is simulated and verified. Finally, some preliminary experiments of the adaptive direct teaching function with variable load on LLR-II are carried out, and the results showed that the control law has good performance, which lays the foundation for future work.

2015 ◽  
Vol 738-739 ◽  
pp. 991-994
Author(s):  
Fu Cheng Cao ◽  
Hong Wu Qin

Human as a varying dynamic system, the control strategies of human-robot interacts differ significantly from that of conventional industrial robot. Considered the patient-centered exercise regimens, a force control method based predict is presented to control a lower limb rehabilitation robot. The control law is introduced that optimises the the maintained force level and limits excessive forceto injury the subject's lower extremity joints. Simulation results show that the robot could guide thelower limb of subjects to move under predefined model of the external force.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7020
Author(s):  
Yan Lin Wang ◽  
Ke Yi Wang ◽  
Kui Cheng Wang ◽  
Zong Jun Mo

Safety is a significant evaluation index of rehabilitation medical devices and a significant precondition for practical application. However, the safety evaluation of cable-driven rehabilitation robots has not been reported, so this work aims to study the safety evaluation methods and evaluation index of cable-driven rehabilitation robots. A bionic muscle cable (BM cable) is proposed to construct a bionic muscle cable-driven lower limb rehabilitation robot (BM-CDLR). The working principle of the BM-CDLR is introduced. The safety performance factors are defined based on the mechanical analysis of the BM-CDLR. The structural safety evaluation index and the use safety evaluation index of the BM-CDLR are given by comprehensively considering the safety performance factors and a proposed speed influence function. The effect of the structural parameters of the elastic elements in the BM cable on the safety performance factors and safety of the BM-CDLR is analyzed and verified by numerical simulations and experimental studies. The results provide the basis for further study of the compliance control strategy and experiments of the human-machine interaction of the BM-CDLR.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Trinnachoke Eiammanussakul ◽  
Viboon Sangveraphunsiri

Robots for stroke rehabilitation at the lower limbs in sitting/lying position have been developed extensively. Some of them have been applied in clinics and shown the potential of the recovery of poststroke patients who suffer from hemiparesis. These robots were developed to provide training at different joints of lower limbs with various activities and modalities. This article reviews the training activities that were realized by rehabilitation robots in literature, in order to offer insights for developing a novel robot suitable for stroke rehabilitation. The control system of the lower limb rehabilitation robot in sitting position that was introduced in the previous work is discussed in detail to demonstrate the behavior of the robot while training a subject. The nonlinear impedance control law, based on active assistive control strategy, is able to define the response of the robot with more specifications while the passivity property and the robustness of the system is verified. A preliminary experiment is conducted on a healthy subject to show that the robot is able to perform active assistive exercises with various training activities and assist the subject to complete the training with desired level of assistance.


Author(s):  
Jingang Jiang ◽  
Xuefeng Ma ◽  
Biao Huo ◽  
Xiaoyang Yu ◽  
Xiaowei Guo ◽  
...  

2014 ◽  
Vol 672-674 ◽  
pp. 1770-1773 ◽  
Author(s):  
Fu Cheng Cao ◽  
Li Min Du

Aimed at improving the dynamic response of the lower limb for patients, an impedance control method based on sliding mode was presented to implement an active rehabilitation. Impedance control can achieve a target-reaching training without the help of a therapist and sliding mode control has a robustness to system uncertainty and vary limb strength. Simulations demonstrate the efficacy of the proposed method for lower limb rehabilitation.


2017 ◽  
Vol 11 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Vahab Khoshdel ◽  
Alireza Akbarzadeh ◽  
Nadia Naghavi ◽  
Ali Sharifnezhad ◽  
Mahdi Souzanchi-Kashani

Sign in / Sign up

Export Citation Format

Share Document