scholarly journals Solute Transport Control at Channel Junctions Using Adjoint Sensitivity

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 93
Author(s):  
Geovanny Gordillo ◽  
Mario Morales-Hernández ◽  
Pilar García-Navarro

Water quality control and the control of contaminant spill in water in particular are becoming a primary need today. Gradient descent sensitivity methods based on the adjoint formulation have proved to be encouraging techniques in this context for river and channel flows. Taking into account that most channels and rivers include junctions with other branches, the objective of this study is to explore the adjoint technique on a channel network to reconstruct the upstream boundary condition of the convection-reaction equation. For this purpose, the one-dimensional shallow water equations and the transport equation for a reactive solute are considered. The control is formulated through the gradient-descent technique supplied with a first-order iterative process. Both the physical and the adjoint equations are supplied with suitable internal boundary conditions at the junction and are numerically solved using a finite volume upwind scheme. The results reveal that the adjoint technique is capable of reconstructing the inlet solute concentration boundary condition in an acceptable number of iterations for both steady state and transient configurations using a downstream measurement location. It was also observed that the reconstruction of the boundary condition tends to be less effective the further away the measurement station is from the target.

2009 ◽  
Vol 50 (3) ◽  
pp. 407-420
Author(s):  
ROGER YOUNG

AbstractAn analytic solution is developed for the one-dimensional dissipational slip gradient equation first described by Gurtin [“On the plasticity of single crystals: free energy, microforces, plastic strain-gradients”, J. Mech. Phys. Solids48 (2000) 989–1036] and then investigated numerically by Anand et al. [“A one-dimensional theory of strain-gradient plasticity: formulation, analysis, numerical results”, J. Mech. Phys. Solids53 (2005) 1798–1826]. However we find that the analytic solution is incompatible with the zero-sliprate boundary condition (“clamped boundary condition”) postulated by these authors, and is in fact excluded by the theory. As a consequence the analytic solution agrees with the numerical results except near the boundary. The equation also admits a series of higher mode solutions where the numerical result corresponds to (a particular case of) the fundamental mode. Anand et al. also established that the one-dimensional dissipational gradients strengthen the material, but this proposition only holds if zero-sliprate boundary conditions can be imposed, which we have shown cannot be done. Hence the possibility remains open that dissipational gradient weakening may also occur.


2000 ◽  
Vol 647 ◽  
Author(s):  
Raúl A. Enrique ◽  
Pascal Bellon

AbstractIon-beam irradiation can be used as a processing tool to synthesize metastable materials. A particular case is the preparation of solid solutions from immiscible alloys, which have been achieved for a whole range of systems. In this process, enhanced solute concentration is obtained through the local mixing induced by each irradiation event, which if occurring at a high enough frequency, can outweigh demixing by thermal diffusion. The resulting microstructure forms in far from equilibrium conditions, and theoretical results for these kind of driven alloys have shown that novel microstructures exhibiting self-organization can develop. To test these predictions, we prepare Ag-Cu multilayered thin films that we subject to 1 MeV Kr+-ion irradiation at temperatures ranging from room temperature to 225 °C, and characterize the specimens by x-ray diffraction, TEM and STEM. We observe two different phenomena occurring at different length scales: On the one hand, regardless of the irradiation temperature, grains grow under irradiation until reaching a size limited by film thickness (~200 nm). On the other hand, the distribution of species inside the grains is greatly affected by the irradiation temperature. At intermediate temperatures, a semi-coherent decomposition is observed at a nanometer scale. This nanometer-scale decomposition phenomenon appears as an evidence of patterning, and thus confirms on the possibility of using ion-beam irradiation as a route to synthesize nanostructured materials with novel magnetic and optical properties.


2018 ◽  
Vol 21 (4) ◽  
pp. 901-918 ◽  
Author(s):  
Sabrina Roscani ◽  
Domingo Tarzia

Abstract A one-dimensional fractional one-phase Stefan problem with a temperature boundary condition at the fixed face is considered by using the Riemann–Liouville derivative. This formulation is more convenient than the one given in Roscani and Santillan (Fract. Calc. Appl. Anal., 16, No 4 (2013), 802–815) and Tarzia and Ceretani (Fract. Calc. Appl. Anal., 20, No 2 (2017), 399–421), because it allows us to work with Green’s identities (which does not apply when Caputo derivatives are considered). As a main result, an integral relationship between the temperature and the free boundary is obtained which is equivalent to the fractional Stefan condition. Moreover, an exact solution of similarity type expressed in terms of Wright functions is also given.


Author(s):  
V. I. Korzyuk ◽  
J. V. Rudzko

In this article, we study the classical solution of the mixed problem in a quarter of a plane and a half-plane for a one-dimensional wave equation. On the bottom of the boundary, Cauchy conditions are specified, and the second of them has a discontinuity of the first kind at one point. Smooth boundary condition is set at the side boundary. The solution is built using the method of characteristics in an explicit analytical form. Uniqueness is proved and conditions are established under which a piecewise-smooth solution exists. The problem with linking conditions is considered.


1997 ◽  
Vol 56 (2) ◽  
pp. 217-225
Author(s):  
Jae Ryong Kweon

A finite element method for solving the compressible viscous Stokes equation with an inflow boundary condition is presented. The unique existence of the solution of the discrete problem is established, and an error analysis is given. It is shown that the error in pressure is dominated by the one in velocity and an error at the inflow portion of the boundary.


1998 ◽  
Vol 08 (03) ◽  
pp. 447-470 ◽  
Author(s):  
Goong Chen ◽  
Sze-Bi Hsu ◽  
Jianxin Zhou

The nonlinear reflection curve due to a van der Pol type boundary condition at the right end becomes a multivalued relation when one of the parameters (α) exceeds the characteristic impedance value (α=1). From stability and continuity considerations, we prescribe kinematic admissibility and define hysteresis iterations with memory effects, whose dynamical behavior is herein investigated. Assume first that the left end boundary condition is fixed. We show that asymptotically there are two types of stable periodic solutions: (i) a single period-2k orbit, or (ii) coexistence of a period-2k and a period-2(k+1) orbits, where as the parameter α increases, k will also increase and assume all positive integral values. Even though unstable periodic solutions do appear, there is obviously no chaos. When the left end boundary condition is energy-injecting, however, we show that for a certain parameter range a shift sequence of subintervals of an invariant interval can be constructed and, therefore, chaos appears. Numerical simulations of chaotic and nonchaotic phenomena are also illustrated.


1981 ◽  
Vol 21 (03) ◽  
pp. 323-338 ◽  
Author(s):  
Alexander S. Williamson ◽  
John E. Chappelear

Abstract A reservoir simulation system uses an analytical model to represent flow within a grid block as it enters or leaves a well. This model is called a well model. We give a description here of the theoretical background of a well model, including how the sandface pressure and saturation boundary conditions can be calculated and how the well boundary itself can be replaced (approximately) by a source function. This paper and the following companion paper, SPE 9770, present a unified viewpoint of material, some of which may be already familiar to simulator developers. Introduction Our concern in this paper is the theory of representation of wells and the well boundary condition in a reservoir simulator.It frequently has been noted that, except in the case of a central well in a problem involving cylindrical coordinates, it is impractical to represent a well with an internal boundary. The ratio of well radius to desired grid-block length can be of order 0.001 or less. In such cases, an alternative procedure has evolved in which the well is represented by a source. The relationship between the source strength, the wellbore flow, and the flow in the surrounding grid blocks composes an essential part of the well model. Even when the grid around a well is sufficiently fine to represent the well as an internal boundary, other features such as partial perforation, partial penetration, or skin may be important to the local flow but extend over a "small" interval in relation to the appropriate grid-block dimension. Here also, a suitable source representation is advantageous. We shall develop the source representation of a well for a variety of circumstances.The well boundary condition generally involves the sandface pressure and flow rate. However, these quantities also must be consistent with the requirements of wellbore flow - i.e., reservoir and wellbore flows are coupled, and a wellbore flow model is required. We describe a means of treating a wide variety of wellbore flows without creating a numerically cumbersome simulator. We hope that this paper may provide a basis for further work and discussion of this essential topic. Review of Literature The source representation of a well can be described as a local, approximate, steady, singular solution of the flow equations. The idea of separating a singularity of this type for special treatment is an old idea in applied mathematics. In series solutions to certain elliptic and parabolic equations, it was found that the convergence of the series could be improved considerably by first extracting the singular part. In these cases the singular solution extended through the entire domain. The analogous approach using numerical methods in place of the series solution is also well known. The use of singular solutions in a purely local role in numerical solutions was introduced before the general use of digital computers. Woods' use of a local logarithmic expression in a solution of Poisson's equation by relaxation methods corresponds closely to the source representation of a well recently proposed by Peaceman. SPEJ P. 323^


1998 ◽  
Vol 12 (21) ◽  
pp. 859-866 ◽  
Author(s):  
S. Grillo ◽  
H. Montani

We study a suitable q-deformed version of the Moriya's superexchange interaction theory by means of its underlying quantum group structure. We show that the one-dimensional chain case is associated with the non-standard quantum group GL pq(2), evidencing the integrability structure of the system. This biparametric deformation of GL(2; C) arise as a twisting of GL q(2) and it match exactly the local rotation appearing in the Shekhtman's work.1 This allow us to express the frustration condition in terms of this twisting, also showing that effect of the Moriya's vector amounts to a twisting of the boundary condition.


Sign in / Sign up

Export Citation Format

Share Document