scholarly journals Stability Analysis of Cohen–Grossberg Neural Networks with Random Impulses

Mathematics ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 144 ◽  
Author(s):  
Ravi Agarwal ◽  
Snezhana Hristova ◽  
Donal O’Regan ◽  
Peter Kopanov

The Cohen and Grossberg neural networks model is studied in the case when the neurons are subject to a certain impulsive state displacement at random exponentially-distributed moments. These types of impulses significantly change the behavior of the solutions from a deterministic one to a stochastic process. We examine the stability of the equilibrium of the model. Some sufficient conditions for the mean-square exponential stability and mean exponential stability of the equilibrium of general neural networks are obtained in the case of the time-varying potential (or voltage) of the cells, with time-dependent amplification functions and behaved functions, as well as time-varying strengths of connectivity between cells and variable external bias or input from outside the network to the units. These sufficient conditions are explicitly expressed in terms of the parameters of the system, and hence, they are easily verifiable. The theory relies on a modification of the direct Lyapunov method. We illustrate our theory on a particular nonlinear neural network.

2017 ◽  
Vol 10 (02) ◽  
pp. 1750027 ◽  
Author(s):  
Wei Zhang ◽  
Chuandong Li ◽  
Tingwen Huang

In this paper, the stability and periodicity of memristor-based neural networks with time-varying delays are studied. Based on linear matrix inequalities, differential inclusion theory and by constructing proper Lyapunov functional approach and using linear matrix inequality, some sufficient conditions are obtained for the global exponential stability and periodic solutions of memristor-based neural networks. Finally, two illustrative examples are given to demonstrate the results.


2013 ◽  
Vol 760-762 ◽  
pp. 1742-1747
Author(s):  
Jin Fang Han

This paper is concerned with the mean-square exponential stability analysis problem for a class of stochastic interval cellular neural networks with time-varying delay. By using the stochastic analysis approach, employing Lyapunov function and norm inequalities, several mean-square exponential stability criteria are established in terms of the formula and Razumikhin theorem to guarantee the stochastic interval delayed cellular neural networks to be mean-square exponential stable. Some recent results reported in the literatures are generalized. A kind of equivalent description for this stochastic interval cellular neural networks with time-varying delay is also given.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Xiaohui Xu ◽  
Jibin Yang ◽  
Yanhai Xu

This paper investigates the mean square exponential stability problem of a class of complex-valued neural networks with stochastic disturbance and mixed delays including both time-varying delays and continuously distributed delays. Under different assumption conditions concerning stochastic disturbance term from the existing ones, some sufficient conditions are derived for assuring the mean square exponential stability of the equilibrium point of the system based on the vector Lyapunov function method and Ito^ differential-integral theorem. The obtained results not only generalize the existing ones, but also reduce the conservatism of the previous stability results about complex-valued neural networks with stochastic disturbances. Two numerical examples with simulation results are given to verify the feasibility of the proposed results.


2011 ◽  
Vol 2011 ◽  
pp. 1-23
Author(s):  
R. Raja ◽  
R. Sakthivel ◽  
S. Marshal Anthoni

This paper deals with the stability analysis problem for a class of discrete-time stochastic BAM neural networks with discrete and distributed time-varying delays. By constructing a suitable Lyapunov-Krasovskii functional and employing M-matrix theory, we find some sufficient conditions ensuring the global exponential stability of the equilibrium point for stochastic BAM neural networks with time-varying delays. The conditions obtained here are expressed in terms of LMIs whose feasibility can be easily checked by MATLAB LMI Control toolbox. A numerical example is presented to show the effectiveness of the derived LMI-based stability conditions.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Manlika Rajchakit ◽  
Grienggrai Rajchakit

This paper is concerned with mean square exponential stability of switched stochastic system with interval time-varying delays. The time delay is any continuous function belonging to a given interval, but not necessary to be differentiable. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, a switching rule for the mean square exponential stability of switched stochastic system with interval time-varying delays and new delay-dependent sufficient conditions for the mean square exponential stability of the switched stochastic system are first established in terms of LMIs. Numerical example is given to show the effectiveness of the obtained result.


2007 ◽  
Vol 17 (09) ◽  
pp. 3219-3227 ◽  
Author(s):  
LI WAN ◽  
QINGHUA ZHOU ◽  
JIANHUA SUN

Stochastic effects on the stability property of reaction–diffusion generalized Cohen–Grossberg neural networks (GDCGNNs) with time-varying delay are considered. By skillfully constructing suitable Lyapunov functionals and employing the method of variational parameters, inequality technique and stochastic analysis, the delay independent and easily verifiable sufficient conditions to guarantee the mean-value exponential stability of an equilibrium solution associated with temporally uniform external inputs to the networks are obtained. One example is given to illustrate the theoretical results.


2010 ◽  
Vol 20 (02) ◽  
pp. 539-544 ◽  
Author(s):  
LI WAN ◽  
QINGHUA ZHOU

The stability of stochastic recurrent neural networks with time-varying delays is investigated. A set of novel sufficient conditions on almost sure exponential stability has been established. Two examples are also given to illustrate the effectiveness of our results.


Author(s):  
Qianhong Zhang ◽  
Lihui Yang ◽  
Daixi Liao

Existence and exponential stability of a periodic solution for fuzzy cellular neural networks with time-varying delays Fuzzy cellular neural networks with time-varying delays are considered. Some sufficient conditions for the existence and exponential stability of periodic solutions are obtained by using the continuation theorem based on the coincidence degree and the differential inequality technique. The sufficient conditions are easy to use in pattern recognition and automatic control. Finally, an example is given to show the feasibility and effectiveness of our methods.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaohui Xu ◽  
Jiye Zhang ◽  
Quan Xu ◽  
Zilong Chen ◽  
Weifan Zheng

This paper studies the global exponential stability for a class of impulsive disturbance complex-valued Cohen-Grossberg neural networks with both time-varying delays and continuously distributed delays. Firstly, the existence and uniqueness of the equilibrium point of the system are analyzed by using the corresponding property of M-matrix and the theorem of homeomorphism mapping. Secondly, the global exponential stability of the equilibrium point of the system is studied by applying the vector Lyapunov function method and the mathematical induction method. The established sufficient conditions show the effects of both delays and impulsive strength on the exponential convergence rate. The obtained results in this paper are with a lower level of conservatism in comparison with some existing ones. Finally, three numerical examples with simulation results are given to illustrate the correctness of the proposed results.


2015 ◽  
Vol 742 ◽  
pp. 399-403
Author(s):  
Ya Jun Li ◽  
Jing Zhao Li

This paper investigates the exponential stability problem for a class of stochastic neural networks with leakage delay. By employing a suitable Lyapunov functional and stochastic stability theory technic, the sufficient conditions which make the stochastic neural networks system exponential mean square stable are proposed and proved. All results are expressed in terms of linear matrix inequalities (LMIs). Example and simulation are presented to show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document